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ABSTRACT

Reflcctor antenna design is a maturc ficld and most aspects have been studicd.
Howecvecr, of that most previous work is distinguished by the fact that {t is narrow in scope,
analyzing only a particular problem under certain conditions. Methods of analysis of this
type arc not uscful for working on real-lifc problems since they can not handle the many
and various types of perturbations of basic antenna design. In this thesis, the idea of an
integrated design and analysis is-proposed. By broadening the scope of the analysis, it
becomes possible to deal with the intricacies attendant with modem reflector :mtcnna design

problems.
In this thesis, the concept of intcgrated reflcctor antenna design is put forward. A
number of clectromagnctic problems rclated to reflector antenna design arc investigated.

Some of these show how tools for reflector antenna design arc created. In particular, a2
method for estimating spillover loss for open-cnded waveguide feeds is examined. The
problem of calculating and optimizing beam cfficicncy (an important figure of merit in
radiometry applications) is also solved. Other chapters in this thesis deal thh apphca.uons
of this general annlysxs The wide-angle scan abilities of reflector anu:nnas is cxammed and
a design is proposed for the ATDRSS triband reflector anteana. The.following chapter
discusses the development of a gencral phased-array pattem computation program and

shows how the concept of intcgrated design can be extended to other types of antennas.

The conclusions arc contained in the final chapter.
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1. INTRODUCTION

The subject of this thesis is based on the analysis and design of reflector antennas
using an integrated approach. The concept is to obtain a method of analysis that can be
applied to a wide variety of problems, rather than one that is narrow in séqpc and may be
applied to only a few specific problem types. Reflector antenna design is a mature field.
Reflector antennas have been in common use since World War II. They are still popular
today due to their simplicity, ease of construction, low cost, and light weight. Most
aspects of reflector antenna design have been studied in the past. Figures of merit such as
directivity, beam efficiency, and sidelobe level have been looked at closely. The effect of
feeds, compensation for reflector distortion, shaping of the reflector dish, etc. have also
been studied. What most of these earlier studies lacked, however, was a broad scope. A
particular aspect of reflector antenna design was studied. A method of analysis was
derived and results were obtained. Then another problem would be tackled, with its own
solution. However the method of analysis could rarely be used for anything other than
generating research papers on that particular topic.

The intention of this thesis is to make the jump from méthods of analysis that
generate research papers to methods of analysis that can be used to tackle a broad range of
real life design problems. This means that the anaysis must be able to handle a broad range
of reflector antenna intricacies. The method of analysis must be very general in nature and
yet be simple enough so that it may be used by someonc other than the originator of the
method of analysis.

In each chapter a separate topic of reflector antennas is discussed. The chapters are
related by the fact that they represent some of the problems encountered with reflector
design. The second chapter discusses an important parameter for reflector antenna design,
the spillover loss. In the third chapter, the aperture integration method, which is used in
our reflector antenna analyses, is explained in detail. The fifth chapter examines the

analysis of beam efficiency, the most important figure of merit for antennas used in



radiometry applications. The fourth and sixth chapters look at problems posed for reflector
antennas. In the fourth chapter, a study is undertaken to find the limits to which a reflector
antenna system might be used for scanning. In the sixth chapter the challenge of
constructing a triband reflector antenna is examined. In this chapter, in particular, all the
capabilities of the method of analysis must be brought to bear on the problem, since there
are many constraints upon the design. It is this type of reflector antenna problem,
involving a space-borne antenna, that will be the focus of much of the future research in

reflector antennas. Conclusions are presented in the final chapter.



2. REFLECTOR SPILLOVER LOSS OF AN OPEN-ENDED RECTANGULAR AND
CIRCULAR WAVEGUIDE FEED

Open-ended rectangular and circular wavegides are a most commonly used feed for
reflector antennas!. Their radiation pattern was first calculated by Chu in 1940 by using a
form of Kirchhoff's approximation [1,2]. Important pattern characteristics such as 3 dB
beamwidth, zeros, and sidelobes are well documented in the literature [3,4]. In reflector
applications, there is another important parameter, namely, the spillover loss, which is
defined as the fraction of power received by the symmetrical reflector within the half-cone
angle 0 (Figure 2.1). (All figures will appear at the end of their respective chapters.) In
this note, we shall present a set of curves giving spillover loss for several practical cases.
For one feed case, we will also present a simple analytic expression which gives a good
approximation to the spillover loss and is obtained by curve fitting.

In spillover or directivity calculations, one must first determine the power radiated
by the feed from the Poynting integral over a closed surface S,ie.,

P = [[{(ExH*)-ds 2.1)
If (E,H) were known exactly, the result of P would be unique no matter which surface S is
used. In the Chu-Kirchhoff formulation [2, Eq. 11], the aperture ficld at the waveguide
opening S; is approximated by the incident mode (e.g., TEj1). The higher-order modes
and reflected field are ignored. This is justified in the literature for circular waveguides
with a>1 A [2] and for rectangular waveguides [5]. Because of this approximation, the two
power computations

Py = P calculated from (2.1) by using surface Sy, and

P.. = P calculated from (2.1) by using the infinite radiation surface S..
are generally different. In fact

1 Some of these results have been published in [EEE Transactions on Antennas and Propagation, June,
1990 [24].



P;>P. (2.2)
because P, contains both P., and the reflected power. In the limit a@/A — o=, Py reduces to
P.. as expected. In Figure 2.2, we plot P./P; as a function of a/) for different waveguide
feeds. In spillover calculations, we use P.. instead of P; as the input power so that the
spillover loss goes to zero as § — n.3

It should be noted that for field patterns the theoretical and experimental results
diverge as the size of the aperture decreases. Agreement is good for waveguides as large as
those for which results are shown in Figures 2.3 to 2.7 [2], [5]. However, the results
should not be extended to cover waveguides smaller than those for which results are
shown.

Spillover results are presented in Figures 2.3 to 2.7 in the following manner.

Table 2.1. Modes used in waveguides

| Fig. waveguide mode
2.3 circular TEn
2.4 circular TEz
2.5 2:1 rectangular sum
2.6 square sum
2.7 . 4 square difference

As an example, consider a circular waveguide for a monopulse feed, using the TE;; mode
and TE;; mode for sum and difference patterns. Let the reflector be of the symmetric

parabolic type with f/D=0.4. The extended half-cone angle of the reflector is 64°. In order

3 Reflector directivity calculations were sometimes carried out by using P (not P..) as the feed input
power. Strictly speaking this practice underestimates the directivity of the reflector antenna. For example,
for a circular guide feed with a=0.7 A and excited by TE2), Po/P1 read from Fig. 1 is 0.91, corresponding
to a directivity underestimate of 0.4 dB.



to keep the spillover loss less than 1 dB, the diameter of the circular guide should be at least
0.90 A. This size waveguide feed would have less than 1 dB spillover loss for both the
TE;; and TEz; modes.

For the case of a circular waveguide excited by the TE;; mode, an analytic
expression has been derived by curve fitting. This expression is fairly accurate over the
range where 20° < 0 < 70° and spillover loss is less than 4 dB. It reads

spillover loss (in dB) = -a6—B
where logo0. = 3.78(a/A)~0-629 2.3)

B = 2.50(a/A)—0-324
Here 0 is the half-cone angle in degrees and a is the parameter defining the feed size. A
comparison of the results obtained from the computer code and from the formula in (2.3) is
shown in Figure 2.8 for several sizes of waveguides.
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Figure 2.1. The total input power radiated from the feed may be determined by an
integration over surface S.. or over surface S;.
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Spillover loss (dB)

Figure 2.8.
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Comparison of spillover calculated by numerical integration and that by the
simple formula in (2.3) for the circular waveguide excited by the TE1; mode.
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3. REFLECTOR ANTENNA ANALYSIS
In this chapter the method of solution for reflector antenna problems will be
discussed. After describing the problem and the various clements involved, the individual
elements will be discussed one-by-one. This derivation is not original, having appeared in
other sources [6], but it is useful for understanding the methods used in in our reflector

antenna calculations.

3.1. Description of Problem

The geometry of the problem under consideration is shown in Figure 3.1. A
reflector S is illuminated by the incident field from an array feed. The method of solution
used is Aperture Integration (AI), which provides the same degree of accuracy as Physical
Optics (PO) and avoids the caustics (infinite field in the main beam direction) that occur in
the Geometric Theory of Diffraction (GTD). In PO, the induced surface currents on the
reflector S are approximated by

J,=2nxH. 3.1
These currents are then integrated to find the far field E*(r). In Al the reflected-field and
diffracted-field contributions at a point P2 on the planar aperture surface S, are computed.
This is done for points forming a grid over the aperture surface. A Fast Fourier Transform
(FFT) is then used to obtain the far-field EXr) (6-9]. Al has several advantages over PO.
First of all, the use of an FFT (allowed by integration over the planar surface S,) is
numerically efficient. The present formulation also allows for the use of multiple
reflectors. In addition, Al can be used to obtain near-field information. Many of today's
experimental measurements for reflector antennas are conducted in near-field ranges so this
method can be used as an analytical check. Other advantages of the formulation of Al
presented here are

@ The surface of the reflector may be arbitrary.

14



(ii) The edge of the reflector can be an arbitrary curve lying on an elliptical cone or
cylinder.

(iii) The divergence factor of the Geometric Optics (GO) field is correctly
computed. This allows the feed to be placed away from the reflector dish
where the divergence factor is not unity.

(iv) The edge diffracted field is included here. Two uniform theories are used to
keep the aperture field continuous from the lit to the shadow region. |

In Sections 3.2 to 3.6 the elements of the reflector problem will be examined. In

the next section the source will be studied. This leads to the incident field H' on the
reflector. In Section 3.3 the method of describing the reflector(s) is put forth. This is
necessary for obtaining the field at some point on the aperture surface. Finally an FFT is
used to obtain the far field.

3.2. The Reflector Surface
The reflector surface is described by an analytical equation. This equation may take
a variety of forms, depending on whether the surface is a type of conic or not. In general,

the surface is described by the equation
z=d,+d;x+dyy +d3xy + d4x2 + d_r,y2 + d2[P(x,y)]d" , (3.2a)

P(x,y) = 5; + $;x + 83y + 54Xy + s-.-,x2 + 36y2 + s7x2y + s,;xy2 + s9x3 + smy3 +
suxzy2 + s,zxsy + sl3xy3 + s,4x4 + slsy“ .
| (3.2b)
Some examples follow.
3.2.1. Parabolic reflector
In this case the reflector equation is given by

2 2
L (3.3)

15



where C, is a constant and f} is the focal length of the parabola.
3.2.2. Spherical reflector
A spherical reflector may be described by

2 2
Z=Cb- R "'Xz‘-y (3‘4)

where C, is a constant and R is the radius of the sphere.
3.2.3. Hyperbolic reflector
This shape is commonly used for subreflectors. The reflector equation is
Z=wgo+ W) lﬂ
w3 3.5)
3.2.4. Conic section

For a reflector cut from a conic section, the reflector surface is given by

(z' 1'=-fe)2+ X2+y22 - 2
1-¢" (1-e¢) (3.6)

where ¢ is the eccentricity and f is the focal length.
3.2.5. Boundary

Two types of boundaries are frequently used and receive special attention. In the
first case, the boundary T is the intersection of surface S and an elliptical cylinder (Fig.
3.2a). The parameters of the cylinder are

(x¢, Yc) = center of the ellipse

(K1, K3) = semiaxis along (x,y) direction.
In the second case, the boundary I' is the intersection of S and and elliptical cone (Fig.
3.2b). The cone axis lies along the (y - yc) - z plane and has the additional parameters

(x=0,y=0, z=-p) = tip of cone

03 = inclination angle of cone axis measured from z-axis

(01, 62) = half-cone angles in the (x - x;) - z and (y - y¢) - z planes.

16



The boundary must be adequately defined in order to calculate the diffracted field ( see

Section 3.5).

3.3. The Source

The source is assumed to have a well-defined phase center at point Py that is the
radiating point for a spherical wave (Hl,E'). When an array feed is used, each radiating
element must be considered separately. The scattered fields from each feed element are
superimposed to obtain the total field at point P; in the aperture plane. Itis desired to know
the value of the wave (H',E‘) where it is incident on the reflector S.
3.3.1. Feed source

The surface current at the radiating aperture of the mth element of the feed array

may be expressed as

Ja(x.y) = In(esac? + eyb) 3.7
where (a,b,y) are real and

2abl=1 (338)

The parameters (a,b,y) are chosen to establish the feed polarization. Table 3.1 shows the
values of (a,b,y) that correspond to commonly used polarizations.

Table 3.1. Various feed polarizations

a b ']
linear x| 1 0 0

lineary| 0 1 0

RHCP| 1N2 142 o°

LHCP| 12 12 90°

The radiated electric field due to J, given by (3.7) is

17



-ikr
Ep= i. m(8.0) (3.9

where £,,(0,0) is the active element pattern of the mth clement. The function f, may be

approximately expressed by

1.(6,9) = gUpo(®) (ac¥cost + bsing) + eUpin(6) (beoso — ac¥sind) (3 1)
where

Ugm(8) = E-plane active pattern of the mth element

Ulim(8) = H-plane active pattern of the mth element.
There are two particular cases of Ugm and Unn, that are of interest. The first case is the g-

feed [10], where the functions are approximated by
UEm(e) = (COSO)qB- volt (3.1 18)

Ui(0) = (c0s8) % volt . (3.11b)

The second case is the numerical feed. Sometimes it is possible to measure the far-field
pattern of an element. In this case, if the pattern can be well approximated by its E-plane
and H-plane patterns, it may be easier and/or more accurate to use measured data for Ugnm
and Uy In this case, the values for Ugy and Upn, are read from a table. The radiated far
field of the feed array is the product of the element field (3.9) and the array factor,

E.= hﬁ Ep(r)-IpcikeuPm
m=1 . (3.12)

where Ep, is given by (3.9), Iy is the complex excitation coefficient, and
ey = sinfcosdey + sinBsin¢ey + cosbe; (3.13)

Pm = Xm€x + Ym€y + Zm€z. (3.19)

Another feed type that is commonly used is the open-ended waveguide. This feed

is evaluated using PO. In this case, the incident fields in the waveguide are assumed to be
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the dominant mode in the waveguide (c.g., TE11). The total field in the aperture is the
incident field plus the reflected field. The far field is

BR=0 (3.15a)
ch—jh 1-Ty p\'? .
o o ( I+ —) °°se](N*°°s¢ +Nysing) , (3.15b)
. -jkl' 1,2
- B oo o(SEY(E) Jsng -
E¢ =4 cosO+ t e A\ e (N,sind Nycos¢) . .15
N is the vector
N=(1+ I‘)I E,' cJ*(X'ineoosMysine.m) ds
! (3.16)
and t is defined by
an WE
t= —— for TE-modes and t= for TM— modes.
o [
The phase constant is defined by
12
an = (kz - ‘&nn) . (3.17)

In this report the most-commonly used open-ended waveguide is a circular guide excited by
a TE mode (Fig. 3.3). In this case the rectangular components of E‘t are [7]

mefmn

o 1(Kmop) sin(m — Dy + T 1 (kP sin(m + Dyl , (3.182)

E, = [Jm_l(icm,.p) cos(m = 1Y = J i1 (K o) cos(m + Dl 3.18b)

where J,(x) is the mth-order Bessel function and T'(Kmna) = 0, where a is the radius of the

waveguide. This leads the far-field expressions

Jn(ka sin@®
Eg=j™" 0 [ —=cos6 + l'(l - —cosﬂ)] Jm(nnna)-i(-ﬁ%lg—)sin m¢ ,
(3.19a)
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2r k

E, = Kap - [ Prun + cosf — F(EE-E- - cose)] () (k2 5in6)

_(ksine 2
Kan

3.3.2. Power radiated

cosm¢ .

(3.19b)-

We will assume for now a planar feed array. The total radiated time-averaged

power of the array, assuming forward radiation only, is given by

Prag = ZJ de f E,(r)-E, (r)r’sin6d¢
with

- = 120 ohms .

[k
VA

Substituting (3.8) into (3.16) gives

P= ZZI,,,!,\[ J'-de j E,_ (0)-EL () s P2 5ingd¢

m=1n=1

Defining the power radiated as follows,
M M
Praa= DD oA -
m=1n=1

a new term, the power matrix Amg, appears.

3.3.3. Incident field on reflector

(3.20)

(3.21)

(3.22)

(3.23)

Up until now, all positions have been determined in the feed coordinate system.

However the reflector surface S is defined in the main coordinate system. The feed

coordinate system can be related to the main coordinate system by an orthonormal

transformation matrix K

4 ey e,] —A[e, e e,]

(3.24)
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Therefore a point P = (x,y,z) on reflector surface S can be expressed in the feed coordinate
system by
IF yF 21T = Al(x-x,) (y-yy) G-2))" (3.25)

where Py = (X y1 1) is the location of the first feed element in the main coordinate system.
Using (3.18), E' can be found at P. The H-field can then be found by the relation

T rxE

A
H'- [H, Ho Hy) =

The incident field is then converted from spherical coordinates to Cartesian coordinates.

(3.26)

Finally, the H-field is converted to the main coordinate system by using

T_ =T T
[H, HyH,] = AlH, H, _H,] (3.27)

This is repeated for each element in the feed array.

3.4. Geometrical Optics Field

The GO field consists of two parts: the incident field H' and the reflected field H'.
The incident ficld at the observation point P> on the aperture grid is taken to be zero, since
it does not contribute to the far-field pattern. The first step for determining the reflected
field is to locate the reflection point on the reflector surface S.
3.4.1. Reflection point

Given a starting point at the feed P; = (x; y; z) and an ending point P; on the
aperture grid, a reflection point O" = (x y z=f(x,y)) on S may exist. The vectors

dy = e,(x - x)) + ey(y — y)) + e,z - 7))

d; =ex(x; —x)+ ej(YZ - y) + &,(z; — f(x.y)) (3.28)
are the connecting vectors from Py to O', and O to P,, respectively. The condition on the

reflection point is that the distance (d; + d2) be a minimum, i.c.,
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;a"(d1+dz)= 0, ﬁa;(dl-l-dz): 0

(3.29)
which can be written explicitly as
1 of 1 of
a:{ (x - x,) + [f(x,y) - 1115;} + Ti;{ (x — x,) + [f(x,y) - zz]-&} =0
1 of 1 of
a;{ (y - yp) + [fCxy) - z,]w} + d—z{ (y - y,) + [fx.y) - 2215;} 0. o

The root of the two nonlinear equations in (3.30) gives the location of the reflection point.
For a given P; and P,, there may be 0, 1, or more than 1 reflection point. The system of
equations in (3.30) could also be solved if the three points are collinecar. An additional

condition avoids this.

(x-xl . X’X2)2+(Y‘Y1 N Y-Y2)2+(Z‘Zx . Z“Zfz)2>5
dy d; d; d; d; d; (3.31)

where J is a small positive number.

A root may exist but be outside I'. If
<1 (3.32)
then the root is inside the boundary T" and is in fact a reflection point on the reflector.

Otherwise the point is discarded. The parameter 1; is given by

1
) (]
SR AN S K, (3.33)

if T lies on an elliptical cylinder and by

1
1y = 2] {Ix - x)eotd,)’ + [(y - yeotd, '} 2 (3.34)
if T" lies on an clliptical cone. The parameters X, Y, K1, K2, 03, and 0, describe the

boundary.
3.4.2. Formula for reflected field
The reflected magnetic field at P is given by



H'(P,) = (DF)e X% {HY(OY) - 2(H(0)-enlen} (3.35)

where DF is the divergence factor and e is the surface normal of the reflector at O". The
normal is chosen to be pointing towards the source so that (en+z) is always greater than
zero. Explicitly, en is given by

ey = A(-f ey — fyey +2) (3.36)
where

A=+ (ff + f; + 1)";' (3.37)

and the subscript x of fy, for example, means partial derivative with respect to x. The
divergence factor in (3.35) describes the spreading out of the wavefront and is expressed as
1 1

J1+@RD 1+ (3.38)

where the square roots take positive real, negative imaginary, or zero values (so that DF is

DF

positive real, positive imaginary, or infinite). (R";, R%) are the principal radii of curvature
of the reflected wavefront passing through O'. Their computation is covered in Section
3.4.3.
3.4.3. Curvatures of reflected wavefront

The formulas from [11] are used in calculating (R"}, R"). The three orthonormal
base vectors of the incident pencil are chosen to be (Figure 3.4)

ey X e _ e (z - z)) — e;(x —x)

i
e = =
1 | ey X el Iz- zl)z +(x - xx)zlm (3.392)
e| e|3 X ei
2 -
| e; 8 e{ (3.39b)
C; - eg(x - x)) + e,(y -y +ez- zy)

x- xl)z +(y- Y1)2 +(z- zl)zlm (3.39¢)



where (x, y, z) are the coordinates of the reflection point O'. Those of the reflected pencil

are chosen to be
ef = ¢l - 2(e}-en)ey (3.40a)
r 1 i,
e; = &; — 2(e;'en)en . (3.40b)

. &lxp-x)+e (y, - y) +ex(zy - 2)
e = 1

[y =x)* + (52 = )7 + (2 - 21" (3.400)
Note that (3.40) establishes a left-hand system, i.c.,

el xej=—€3 .
This does not affect the final solution of (R";, R%). The three orthonormal basis

vectors of reflector S at O are chosen to be

es _ e, X e;fx
12
(1+£) (3.41a)
S e§ X ef
e
legx e Te§xefl (3.41b)
)
€3 = en (3.41¢c)

From (3.39) and (3.41), the elements

Pia=ehes , mn=1,23 (3.42)
can be calculated with the results
o = (z-1zy) - f,(x = xy)
1+ OP(x - x) + (2 - )" (3.43a)
o —£[(x - x)) + fx(z - 2))]

AQ + & (x - x) + 2 - )17 (3.43b)



~x-x)y-y) - f,y-y)z-z)

P51 =
L e D x oy - y + - 2 + - x) P+ (g =y e - )P
(3.43¢)
; ff,(x = x;)y = yp) H1 + £)l(z - zl) +(x- xl)] - £,y -y)z - z;)
A +f2)m{(x %)Xy -y + (@ -2+ k= x )T+ (y - y2z-z)* 1P
(3.43d)
pis = a- Alf(x = x) +f(y-y) - (- z;)] . 343¢)

The first four elements ((3.43a ) - (3.43d)) form the 2 X 2 matrix P. Because of the

particular choice in (3.40), we have F* = P'. The curvature matrix of the incident pencil is

= |d' 0
0 4 (3.44)

and the curvature matrix of reflector S at O' is

5. [eAz(G “FE) A(F-fE)E ]
)

2
A(cF —fEVE A2(gE - 2F + eF[E (3.45)

E=1+f, F=ff,, G=1+f
e=-Af,, , f=-Af,, g=A4f,
The desired curvature matnx(sx may be calculated from the following matrix equation

6 = ai + 2pi33[( ;i)T]—l as( Si)‘l . (3.46)

The four elements of QF may be denoted by
G- [Qu le]

Q; X (3.47)

Thea the desired radii of curvature of the reflected wavefront at O are given by

1 1
11 3 {(Q11 +Qp) i\ﬁQn +Qp)’ - 4(Q1Qn - QlZQZl)} :

) 4 r
R R (3.48)



Both R¥; and R%; are real. If the radius is positive, then the corresponding normal section

of the reflected wavefront is divergent. If the radius is negative, then the corresponding
normal section of the reflected wavefront is convergent.

If there is more than one reflection point, then the total reflected field is the
superposition of the reflected fields for each reflection point. If no reflection point exists,
then the reflected field is zero. If the reflected point is near the boundary, then the reflected
field is calculated as normal, but the diffracted field is adjusted later by using UAT so that

the total field is correct.

3.5. The Edge-Diffracted Field

In addition to a reflected field at Py, there is also an edge-diffracted field. The first
step for finding the diffracted field is to find the diffraction points on the boundary I'.
3.5.1. Diffraction points

Consider a source point P; at (x';, y'1, z'1) and an observation point P; at
(x'2, ¥'2, z'2) with coordinates given in the prime coordinate system (Fig. 3.5). A
diffraction point 0? with coordinates (x', y', Z) can be determined from Fermat's
principle, much as the reflection point was

-%(d; +d)=0 (3.49)
where d3 and d4 are distances from P to 0% and 0% to Pz: respectively. This may be

rewritten as

81"’"1 Sl"x'z g, (82')"1 Sz‘fz]agz (83‘2'1 83“2:2 3g3_
( 5 T4 )W* G tq et g T Jw’
(3.50)

where (g1, g2, g3) are parametric functions describing x', y', and z' in terms of ¢'. A root
of this equation is a diffraction point. Depending on the geometry, as many as four

diffraction points can exist.
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3.5.2. Formula for diffracted field
Each diffraction point has associated with it a contribution to the diffracted field He
The formula is

HYP,) = g(kd,) 1 1 le;D"Hi + e D'H.] :
2 Ji+ @Ry S0P e (3.51)
where g is a cylindrical wave factor
1 . L.
glx) = > r__zmcx;{ J(x+ 4)] . .52

The other factors are explained in more detail in the following sections.
3.5.3. Divergence factor
The square root in (3.51) can be positive real, negative imaginary or zero. R, isa

radius of curvature of the diffracted wavefront passing through 0 and is found from the

equation [11]
LI +— [eq —e€q ) e
R, " d: 24 00y “dg TR
1% sinp (3.53)

where P is the angle between tangent t and d¢. The term x is the curvature of curve I' and
ey is the normal of this curve at 0. This leads to a final expression for the divergence
factor of the diffracted field

| 1 1

-.Jl+(d4/R1)— N1+G (3.54)
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where

4, d

d3 * pA(sinp)’
Y O IS S

+( G -+=3 . 2)[81(&82 — 8281) ~ 8(8283 — £387)]

2=2 Z=Zp ), . e e oo
+( d; -+ da )[82(8283"8382)-g1(g3g1-glg3)]

X-X'l x'—x'z v " " . n . v 0w + 0w
{( a4 + a4, )[gs(gsgl'8183)"82(8122"8281)]

(3.55)
where a g-prime (g') represents a derivative of g with respect to ¢’
' Lo e e e 2\112
sinp = |(1 -{ Pa, [(x -x)g +(y - y)g+ z1)33']} ) I (3.56)
p=af @)+ (&) + (&) . (3.57)

3.5.4. Diffraction coefficients
The hard and soft Keller's diffraction coefficients D" and D* are defined in Eq.
(5.22) of [11] as
D" = 41 F 4 = —secn (0 - ¢ £ 5o (0 + ¢ .
2 2 (3.58)
The angles ¢ and ¢i are shown in Figure 3.6. They are calculated from the relations

(Proj d3)-(e, x ep)

cosd’ = (~1)
| Proj d | (3.59)
(Proj d)-(e, x e,)
cosp = :
| Proj d|
4 (3.60)

Here Proj d3 is the projéction of d3 on the plane perpendicular to €, This can be rewritten

. -1
cosd' = [S3 M, + S3;Mp + S33M,)(83, + 83, + S (3.61)
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where

cosd = [Sq;M; + SoM;p + S43M3lISF + S5, + Skl

dsQ .

S3p=(x = x;) - 58
S3=(y —y1) - 1;232
Sy =z -z) - %83
Sy = (x'2 -x)- d—;,—le
Se2=(y2-y)- E%Pg;_

d, Q.

S=(m-2)- 58
1 . .

M, = 5[Nzg; - Nag;)
1 . .

M, = $[N381 - Nigs)

1 . .
M;= ﬁ[ngz - Nyg;]

(3.62)

and Nj, N3, and N3 are the components of ey, the normal to surface S, in the (x', y', Z')

coordinate system.

The solutions of ¢ and ¢i are subject to the following tests:

G O0<¢'<mifT320,and % <¢' <27 if T3 <0, where
T3 = (-Proj d3)-eny = —S3;N; — S32N; = S33N3 .

(i) 0<¢p<mif T420, and & < ¢ <2z if T4 <0, where
T4 = (~Proj dg)-en = SqiN; + S45Np + S43N3 .

(3.63)

(3.64)

(iii) If the observation point P; is exactly on the incident shadow boundary, then

¢-¢i-1t=0 .

(3.65)

(iv) If the observation point P; is exactly on the reflected shadow boundary, then

¢+¢i-1t=0 .

(3.66)
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When P, is on the incident shadow boundary (case iii), the factor xi becomes
infinite. The resulting computational problem is avoided by moving P, slightly whenever
this occurs. Similarly, %° becomes infinite in case iv, and the same procedure eliminates
the problem here also. UAT will be used later to modify the diffracted field H* 1o H".

3.5.5. Spherical components of incident field
Fields Hlp and H'; from (3.51) are the two spherical components of the incident
magnetic field H' evaluated at O° in the directions B' and o’. The base vectors are shown

in Figure 3.7 and may be calculated from

ep'= (ey'x d3)/ds (3.67a)
e.' = (e, X d3)/(d3sinf) (3.67b)
Then it can be shown that

Hj= Fs"—;;ﬁlnlg} + Hagy + Hags) 3.68)

B = g (e - 20 ~ 50~ Y1+ lgs(x - x) =6y = =)

+ Hylgy(y = y0) - B = xp)]
(3.68b)

where (H;, H, Hj) are the components of H'in the primed coordinate system.
3.5.6. Rectangular components of diffracted field

The only part that needs to be determined now are the spherical base vectors for the
diffracted field, eg and 5. They are defined by equations similar to (3.67), namely,

eg = (e dy/d, (3.69a)

e, = (e, x dg)/(dgsinB) . (3.69b)
Once these vectors are determined, they must be expressed in terms of the rectangular
components (ex, €y, €;) SO that the diffracted filed may be superimposed upon the
reflected field. The corresponding diffracted E-field is then

120% 19(p,) x dg] .

E4(P,) = ——
7 d, (3.70)



3.5.7. Detour parameter

As mentioned in Section 3.5.4, when the observation point is near the reflected
shadow boundary, the diffracted field HY is not valid. The "detour parameter” is used to
determine if this happens. From Section VI of [11],

& =elk(ds+dy - dy - a1 . 371)
Here ¢ is the shadow indicator of the reflected field and is +1 or -1 if the point is in the

shadow or lit region of the reflected field, respectively. It may be shown that

€= Sgr{—cos-;-(q) + ¢i)] 3.72)
When the caustic of the reflected field falls on the reflected field shadow boundary, § is
imaginary; otherwise, it is real. Following the numerical study in [12],

lel =2 (3.73)
is the dividing line. This means that if | E | > 2, then the field H* is valid. If not then H'
must be replaced by H®. When & is small, (d; + d2) and (d3 + dy) from (3.71) are nearly
equal and an alternate formula for § is used, namely,

, [1+ (dyR))]
§~—cos§(¢+¢‘)sinsﬁk* Yol GR, £-0,

14 (dyR])af 1+ (dy/R3)

(3.74)
where the square root in the numerator is the divergence factor of the diffracted field and
the square root in the denominator is the divergence factor of the reflected field.
3.5.8. Uniform asymptotic theory

We shall calculate by the UAT developed in [13-15], namely,

Bro \_ wqd BN P |
H°(P,)=H (P2)+[F(§) FE) - (1 e)]H (P) , (3.75)

where F is Fresnel integral defined by

F(z) = n~ 12 ™ J_c'j'2dt and
z (3.76)
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F(z) = 223; ex —j(z2 + %)] . G.77)

The factor (1 - €)/2 in (3.75) is one if P, is in the lit region and zero if it is in the shadow.
The multiplier for H goes to zero as § goes to infinity, so that HP becomes equal to HY.
Near the boundary, HP is finite and compensates to make the total field continuous.

3.6. Secondary Pattern Computation
From field equivalence principles, solutions for the far field may be obtained if the
tangential fields E, and H, on the aperture plane are known. This can be done directly.

The following vector quantities may be defined

fluv) = j L E,(x.y) &+ Vaxdy

(3.78)
gluv) = jj H,(x,y) ™+ dxdy
S (3.79)
where
u = sin6 cos¢
v = sin® sin¢
k=2n/A

0, ¢ = sperical coordinates of the far-field point.
Since the aperture fields are tangential and the far field is assumed to be in the z-direction, f

and g will have only x- and y-components. There are three equivalence principles and each
leads to a different pair of equations for the the far-field E-field components Eg and E,.

(1) Using E, and H,
P
Eg= Jl;cm- [f,cost + £,sin¢ + Z,cos (g,cosd — g,sin¢)] (3.802)
ke . i
E,= L4-1:r_ [cos8(f,cosd — f;sind) — Z, (g,sind + g,cos¢)] (3.80b)

(2) Using H,

jke :
Eg= Tz 22050 (£,c05¢ — g,sin¢) (3.81a)



jke .
Ey==~3— Z, (g,sinf + g;cost) (3.81b)
(3) Using E,
= . e-jh i
Eq Lk—m (fxcos¢ + fysing) (3.82a)
el g
Ey = o cosB(f,cos¢ ~ f,sing) . (3.82b)

This method is exact if the aperture fields are known everywhere. In practice the aperture
plane must be truncated in order to employ the FFT.
3.6.1 Fast Fourier transform

Some manipulation of the integrals in (3.78) and (3.79) must be done in order to
use the FFT. When the components of the aperture field have been correctly scaled, the
fields can be approximated by a double summation over the grid points in the aperture
plane. The grid is two-dimensional and covers a portion of the aperture plane that is
slightly larger than the reflector, i.c., the grid extends past the projection of the boundary I’
on the aperture plane. Each term includes a scalar constant factor, the Fourier coefficient

Can. After some more manipulation and evaluation of the integrals, the expression for fy is

N M Jn _ I _
V) =K O, D, Cpgd™™ “"[’X("‘““("z "‘))]“"[T( +lyz Yl”]
x\u, r(mA+u(x,—x,)) ®(nA+v(ys-y))
A

(3.83)
where

KX
K = (x; = Xy, - yp) Q=+l (3.84)

Similar results can be obtained for the other far-field components.
3.6.2. Polarization of secondary pattern

The polarization of the secondary pattem is described by the elements (a®,b®,y").
In the planar aperture of the main reflector at z = 0, the tangential electrical field polarization

can be written
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E,p(z=0) = (e,;a”t""'p +e,b°) g(x,y) . " (3.85)

where g(x,y) is the aperture field distribution in the xy plane. From [16] we can define the

orthonarmal reference and cross-polarization vectors of the secondary pattern by

e = eg(a’ci"' cos¢' + bPsing’) + e.(-a"cw’ sin¢' + bPcos¢’) — (3.86)

ec= eg(a"e'j"Psins¢' - bPcosd’) + e¢(a"e'j‘"’cos¢' + bPsing") . (.87)
The polarization parameters (a,bP,yP) of the secondary pattern are related to the
parameters (a,b,y) of the feed by the relationship

a?P =a, bP=b, V=y+m . (3.88)
For example, this means that an RHCP feed produces an LHCP secondary pattern. This
relationship is true only when a single reflector is involved. For the multireflector case this
may change. It is important to keep track of the number of reflections in the system in
order for the secondary pattern polarization to be correct.

3.6.3. Directivity
Once the ref-pol of the secondary pattern for a single clement has been found, the
process can be repeated for all of the elements. The total ref-pol of the secondary pattern is
M
Ef = ) Eraln
m=1 (3.89)
where Erpy is the ref-pol field for the mth element assuming excitation I, = 1, and I, is the
actual feed excitation.

The directivity of the reference polarization is defined by

4n(ER)

Dy(0.9) = A (3.90)
where P .4 is the power radiated by the feed. It can be calculated by a brute-force
integration over either half-space or all space. The cross-pol directivity may be calculated
by a similar method.



3.7. Concluding Remarks

The main usefulness of the Al method is that it is very general in nature. Until
recently, when the currents on a reflector were found, steps would be taken to reduce the
resulting integral so that its computation would be possible. These steps were usually
based upon some aspect of the reflector geometry. With the advent of the supercomputer,
this is no longer necessary. A brute-force FFT can be used to cvaluate the fields in the
aperture without any geometry-based simplifications being made. Since the FFT is not
dependent upon the reflector shape, this method may be applied to arbitrary reflectors. In
addition, the method may be repeated in order to include additional reflectors.
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Figure 3.1.  Secondary pattern of a reflector antenna using Aperture Integration.
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a. I'on elliptical cylinder

b.T on elliptical cone.

Figure 3.2. Two examples of boundary I' of the reflector.



Figure 3.3. Coordinate system used for open-ended circular waveguide.
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Figure 3.4. Reflection from the reflector S.
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Figure 3.5. Diffraction from boundary T of the reflector.
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Proj B

Proj B

Figure 3.6. Projection of Figure 3.5 on a plane perpendicular to tangent e;.
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Figure 3.7. Spherical base vectors.
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4. WIDE-ANGLE SCANNING FOR REFLECTOR ANTENNAS

Traditionally, reflector antennas are designed for limited scan®. A symmetrical
parabolic reflector with £/D=0.4 can only scan 5 beamwidths (BW) with less than 2 dB
loss [4]. If the reflector diameter is 1,000 A, the £5 BW scan comresponds to only 10.5°,
which is a very narrow field of view.

In some future applications, the antenna requirements will be quite different from
what they presently are. One example is the NASA Earth Science Geostationary Platform
Project. The preliminary antenna specifications are as follows:

Frequency range 20 GHz - 200 GHz

Antenna diameter 15 m (1,000 A - 10,000 1)
Scan range 1 12° (£33 BW - £330 BW)
Scan range 2 18° (133 BW - £1,333 BW)

Note that the scan requirement has been significantly increased from the traditional value of
45 BW. Usually a phased array design is used to satisfy specifications such as these.

A phased array antenna design is an order of magnitude more complicated than a
reflector design. This is due to the large number of array elements and the beam-forming
network contained in the design. Reflector antennas have the additional advantage of being
less expensive and lighter in weight than phased arrays. Therefore, it is desirable to use a
reflector antenna design if at all possible. The question then is "Can a reflector antenna be
designed that is capable of meeting these specifications?”

This paper examines and compares six different reflector designs. We intend to
show how far the reflector performance can be stretched. The object is to achieve a wide-
angle scan that will satisfy requirements such as those listed above. The first three designs,
P1, P2, and P3, are parabolic single reflector designs. These three designs are considered

4 Some of these results have been published in Microwave and Optical Technology Letters in July 1990
[361.
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in Section 4.1. The first design is a center-fed, single-element feed design with f/D=
(Fig. 4.1a). Scanning is accomplished by mechanically tilting the reflector. The second
design has f/D=1 and uses a 19-clement cluster feed but, otherwise, is similar to the first
design (Fig. 4.1b). The third design is an off-set reflector with /D=2 and an electronically
scanned cluster feed (Fig. 4.1c).

The last three designs, C1, C2, and C3, are dual reflector cassegrainian designs.
They are considered in Section 3.2. The three designs all use the same reflector geometry.
The first design scans by mechanically tilting the main reflector (Fig. 4.2a). The second
design scans by mechanically tilting the subreflector (Fig. 4.2b). The last design scans by
tilting both the main reflector and the subreflector (Fig. 4.2¢).

Data on extremely wide-angle scans of reflector antennas are scarce in the literature.
Hung and Mittra [17] in 1986 did analyze a center-fed symmetrical parabolic reflector with
a cluster feed and calculate patterns up to a hundred-beamwidth scan. We have verified our

single reflector computer code by comparing our results with theirs.

4.1. Single Reflector Antennas
4.1.1. P1: symmetric parabolic reflector with f/D=2

Two contributing factors to poor scanning ability are (i) short focal length and (ii)
high offset. For these reasons, the first design considered is a symmetrical parabolic
reflector with an unusually long focal length. Design P1 has a diameter D=1,000 A and a
focal length £=2,000 A, thus giving f/D=2. The feed is a long circular open-ended
waveguide with radius a=3 A. A study was done of the directivities and beam efficiencies
corresponding to various feed radii. The results are shown in Figure 4.3, with directivities
converted to antenna efficiency. Antenna efficiency is defined as the fraction of the
nominal directivity that the given directivity is, namely,

Ty = (Directivity/(xD/A)’
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In this case, the nominal directivity (xD/A)2 is 69.9 dB. The radius value chosen was that
which maximized beam efficiency. The antenna has a half-power beamwidth
HPBW=0.07°. Beam efficiency is calculated as the fraction of power hitting the reflector
that is contained in the beam defined as being 2.5 times as large as the HPBW [18]. In this
case, the beam has a half angle of approximately 0.09°. Note that this definition of beam
efficiency does not take into account spillover loss. The chosen radius value of 3
produces the highest beam efficiency, 1=0.91. Scanning is accomplished by tilting the
main reflector. Tilting the main reflector by a degrees results in a scan angle 8~2c.. The
main advantage of tilting the reflector instead of moving the feed element is that the scan
angle is twice the angle of the tilt. If the feed were moved, then the angle of scan would be
equal to the angle that the feed was moved through. This is referred to as the mirror effect.
Since for any reflector design, the scan loss increases as the feed moves away from the
reflector's focal point, a significant reduction in scan loss is gained by tilting the reflector
instead of shifting the feed.
Features of reflector P1 are

1. Virtually no feed blockage due to the small size of the single element
feed.

2. Depending on the exact arrangement, there is a lossy transmission
distance between the feed and the receiver/transmitter. To avoid
excessive transmission loss at high frequency applications (60 GHz or
more), it may be necessary to connect the feed and the
receiver/transmitter via a beam waveguide.

3. Because of the mirror effect, the scan range is twice as far as for the
conventional shifted feed design.

The radiation pattern for the on-axis beam is shown in Figure 4.5. The radiation
pattern is calculated by a standard physical optics reflector code [19]. The directivity is
66.7 dB which includes the following losses:
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Nominal directivity (xD/A)? 69.9 dB
Feed spillover loss - 0.6dB
Amplitude taper over reflector surface - 256dB
Directivity  66.7 dB )
The above directivity, as usual, does not include the loss due to the feed transmission line.
The 3 A radius feed produces a pattern that has a null before the edge of the reflector (Fig.

4.4). This pattern results in a sidelobe level of -31 dB. It is a commonly used rule-of-

thumb that to maximize beam efficiency, the first feed pattern null should lie on the reflector
edge, which is at 6,,,=14.25°. The first null lay on the reflector edge for feed radius

a=2.3 A. This value produces close to a maximum in beam efficiency (see Fig. 4.3).

This reflector has extremely good scan characteristics because of the long /D and
the mirror effect. The scan loss is only 0.6 dB at 6;=8° (Fig. 4.6), corresponding to a 114

beamwidth scan. The sidelobe level does increase from -31 dB to -13 dB as expected. At
a larger scan angle 6,=20° (286 beamwidth scan), the scan loss is 5.1 dB and the pattern is

badly distorted with a high shoulder (Fig. 4.7).
4.1.2. P2: symmetric parabolic reflector with /D=1

A drawback of P1 is its excessively long focal length (2,000 A). Now let us reduce
it by one half, giving a f/D=1. Then wide-angle scan is possible only if a cluster feed is
used. A brief explanation of the cluster feed concept is in order at this point. The feed

cluster consists of N identical elements with complex excitations

I=[Il, 12""'IN]

We wish to determine I so that, when the beam position is at 8, a prescribed

antenna parameter such as directivity, beam cfﬁcicnéy, or sidelobe level is optimized. To

this end, let us introduce an element secondary pattern vector E such that

E(8g)=IE, (8p), E;(8p),....Ex(80)] @4.3)

4.2)



where E, (6, for example, is the co-polarization secondary pattern in direction 6, when

element 2 is excited with

Iz=l
[,=0 , foralm=2. 4.4)

There exist three methods for determining I in the literature.

®

Conjugate Field Matching [20-27). The cluster excitation is simply set equal
to the complex conjugate of E(Byp), i.c.,
I=[E(6y)]* 4.5)

Strictly speaking, such a choice of cluster excitation does not optimize any
particular antenna parameter. For practical purposes, however, it does lead to

nearly optimum directivity in most cases.

@) Optimum Directivity [28). For a feed cluster with prescribed primary

(ii)

patterns and element locations, the directivity in direction 6 is optimized by

choosing
1=A" (E (0] (4.6)

wthisaNstqummanixwimelemcnts

4%
Am=% | ExE)dQ 4.7)

where C is a normalization constant, and the integration is over 4% - radiation
sphere. When the clement spacing of the clus& is large (a few wavelengths),
matrix A is nearly an identity matrix. Then the solution in (4.6) reduces to
that in (4.5).

Sidelobe Control [29,30]. The element secondary pattern vector Ein (4.3)is
normally calculated in a tr#nsmitting approach. By reciprocity, it can be
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calculated equally as well in a receiving approach when the reflector is
illuminated by an incident plane wave from direction 6. In the receiving
approach, there is an additional advantage that the amplitude of the plane wave
can be tapered. It is found that the amount of taper controls the sidelobe level
of the final secondary pattern when the whole cluster is turned on.

Return now to P2 in Figure 4.1. A 19-clement cluster feed is used. The individual
elements are circular feeds with radius a=1.2 A. This value is chosen to maximize
directivity for a single feed scanned on-axis. This radius feed also produces a relatively
good beam efficiency with =0.88. The maximum beam efficiency was n=0.89, which is
recorded for a feed with radius a=1.3A. Sidelobes for the a=1.2 A feed were -23 dB. This
was not nearly the best possible sidelobe value, as a feed with radius a=1.5 A had sidelobes

that were -32 dB, along with 1=0.87. The primary pattern of the a=1.2 A circular

waveguide feed was approximated by a (cos6) pattern with g=9.5. This value of q gave
good sidelobe matching but the main lobe was 0.6 dB higher, with a maximum directivity
of 68.9 dB. Spillover loss for the cosi8 feed pattern was 0.4 dB for a=1.2 A. The cluster
feed is used to help compensate for the higher scan losses that result from the lower £/D.
At small scan angles only the center feed element has a relatively strong excitation (Fig.
4.8a). For an 8° scan (i.e., the reflector is tilted 4°) only two of the outer ring elements
have significant excitations (Fig. 4.8b). This indicates that for scans under 8°, a 7-element
cluster feed would probably work almost as well as a 19-element feed. When the reflector
is tilted 10° for a scan angle of 20°, nearly all of the elements are excited (Fig. 4.8c). At
0,=8°, the scan loss is 3.7 dB (Figs. 4.9, 4.10), and at 8,=20°, the scan loss is 7.4 dB
(Fig. 4.11). Very similar scan loss results were obtained with a=1.5 A feed. This is not as
good as the results for P1, but it is only a few decibels worse. The advantage of P2 over
P1 is that the focal length has been cut in half. The disadvantage is that a 19-element feed
is much more complicated than a single element feed. For both of these center-fed designs
the feed blockage is negligible.
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Though design P2 has a higher scan loss at 8,=20° than P1, the beam is less

distorted (see Fig. 4.7 and Fig. 4.11), because at scan angles of this size, the cluster feed is
able to form a much better beam pattern than does a single element feed. For angles below
6,=8°, there is no benefit to design P1 from using a cluster feed. However, scan loss
could be reduced for large scan angles by using a cluster feed.

4.1.3. P3: offset parabolic reflector

Design P3 is an offset parabolic reflector. Offset height must be kept as small as
possible to avoid intolerably high scan loss. Unfortunately, small offset leads to serious
feed blockage. A possible way out of this dilemma is to use two identical reflector
antennas: one for scanning up and one for scanning down as sketched in Fig. 4.1. The
focal length is 2,000 A and the reflector diameter is 1,000 A, for a f/d=2. The offset height
- is zero. In contrast to P1 and P2, this design utilizes electronic scanning. This means that
a large feed array is used. Up to 19 elements are excited at any time. In order to cover a
scan range from 6,=0° to 6,=8°, a semicircular array with a radius of 283 A must be used.
The individual feed element has a radius a=1.065 A, meaning that roughly 65,000 elements
are needed for the entire device. This feed size is chosen so that if the excited element is
turned off and an adjacent element is turned on, then the beam is scanned 1 BW. This
antenna has an on-axis directivity of 66.2 dB when a single element is turned on. The
spillover loss is 3.5 dB. This is quite high since the feed clement is so small. Note that
this antenna has roughly the same f/D ratio as P1, which uses a feed that is three times
larger in radius.

The advantage of the electronic scan is well-known: it is fast and inertialess.
However, electronic scanning forces the use of a feed array that has half the diameter of
one of the reflectors used. Therefore, this design uses about a fourth as many elements as
a phased array with the same aperture size. The savings in complexity are almost lost. In
addition, the overall volume occupied by this antenna is much larger than that needed by the

previous designs. For the on-axis beam, only the center element of the 19-clement cluster
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is significantly excited (Figs. 4.12, 4.13), with a directivity of 67.3 dB. This is slightly
higher than that excited by a single element feed (66.2 dB). Although excited with small
excitations, the surrounding elements do help to reduce the spillover (Fig. 4.15).

Another problem is that the design puts a physical limitation on the maximum
scanning angle, because the feed elements do not move. The previous designs could have
been scanned farther than 20° if it had been desired. This design has a directivity of 67.3

dB, with BW=0.06° and sidelobes at -18 dB. Patterns were computed at scan angles
6,=0°and 6,=8°. The feed excitations used to obtain these results are shown in Figure

4.12. At 6,=8° the scan loss is already 6.3 dB (Fig. 4. 13, 4.14). The advantages of
electronic scanning are that it is quicker than mechanical scanning and that it will not upset
the equilibrium of the spacecraft since there is no physical motion. Some of the drawbacks
listed above could be avoided by mechanically moving a 19-element feed cluster instead of

electronically scanning. However, this design has much more scan loss at 8,=8° than

designs P1 and P2.

4.2 Dual Reflector Antennas
4.2.1. Cl1: cassegrainian reflector with tilted main reflector

Design C1 is a dual-reflector cassegrainian antenna. The main reflector is parabolic
with a focal length of 2,000 A and a diameter of 1,000 A for a f/D=2. A Cassegrain
antenna may be considered as a folded version of a parabolic reflector. In many
applications, it is desirable to reduce the length of the antenna and to place the feed directly
behind the vertex of the main reflector. These are the reasons for folding the antenna.
With f/D=2 for the present case, it is not possible to fold the feed close to the vertex
without either excessive spillover loss or an excessively large subreflector or even both. In
the present design (Fig. 4.2), the hyperbolic subreflector has a diameter of 115 A and is
located 1,650 A from the main reflector vertex. The circular feed has a radius a=1.5 A and

is located 1,300 A from the main reflector vertex. This feed size is chosen to produce 10



dB edge taper on the subreflector. Directivity for this design is 67.1 dB, with BW=0.06°
and a -18 dB sidelobe level. Scanning is accomplished by tilting the main reflector. The
scan angle 8y~ ;, where a; is the angle at which the main reflector is tilted. The
performance of C1, shown in Figures 4.15 and 4.16, is similar to that of P1, the unfolded
version of C1. The use of the subreflector does change the aperture taper. Consequently,
the sidelobes of C1 and P1 are different.
42.2. C2: cassegrainian reflector with tilted subreflector
Design C2 has the same geometry as C1. Scanning is accomplished by tilting the
subreflector instead of the main reflector. Due to the substantial difference in size, tilting
the subreflector is much easier mechanically than tilting the main reflector. Electrically,
however, tilting the subreflector for wide-angle scan is not feasible because
(i the subreflector must be tilted by a much larger angle @, in order for the beam
to scan. The approximate relation between the two angles is
6g~0,/M
where M=D_ .. /D, =magnification factor.
(i) When the subreflector is tilted by a large angle, there is an excessive spillover

loss.
In this case M=8.7. The scan loss is quite high. At 8,=1.75° the scan loss is 6.6 dB

(Fig. 4.18). At 6,=3.32°, the scan loss is 36.3 dB. This would seem to indicate that
tilting the subreflector is not a viable option for wide-angle scan.
4.2.3. C3: cassegrainian reflector with both reflectors tilted

Design C3 has the same geometry as C1 and C2. Scanning is accomplished by
tilting both the subreflector and the main reflector. The idea is to use the main reflector for
coarse scanning and the subreflector tilting for local scanning within a small angular region.

The scan angle 8p=2(a;+05/M). Given o and 0, the scan loss can be obtained by

looking at the results for C1 and C2.
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4.3, Conclusions

We have studied the wide-angle scan ability of the six reflector antennas shown in

Figures 4.1 and 4.2. All reflectors have a circular diameter of 1,000 A and f/D=2, except

that P2 has a shorter focal length f/D=1. The scan loss is summarized in Figure 4.19.
Conclusions are listed below.

®

@

(iii)

@v)

)

For mechanical scan by tilting reflectors, the best system is P1. The scan loss
at 90=8° (114 beamwidths) is only 0.6 dB (Figs. 4.5, 4.6). The sidelobe

level for the 6,=8° position is increased considerably (from -31 dB to -13

dB). This problem, which may be alleviated by using the cluster
compensation method [25, 27, 29], should be studied.

The folded version of P1 is the Cassegrain antenna C1. In the present study,
the feed is taken to be a single open-ended circular waveguide with a=3A. As
a consequence, the amount of folding achieved is small (the length reduction
is from 2,000 A to 1,650 A). If more folding is desired, a much larger feed
should be used.

To shorten the £/D from 2 to 1, reflector P2 must rely on a cluster feed to
reduce its scan loss. The excitation of the cluster varies as the beam scans.
The scan performance of P2 is still not as good as that of P1, indicating that a
19-clement cluster cannot totally compensate for the reduction in f/D.

Tilting the subreflector of a Cassegrain antenna can only achieve a small scan
(about £15 BW). It can be used in conjunction with the electrically more
effective but mechanically more costly main reflector tilting to achieve a small
local scan.

Among the six antennas, only the offset parabolic reflector P3 scans the beam
electronically. The price is high since (a) there are two identical antennas, one

to scan up and one to scan down, (b) the feed has 65,000 elements, and (c)
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with a 19-¢lement feed cluster, the scan loss at 90=8° is 6.3 dB. Without the

cluster, the loss is 15.4 dB. This is much worse than the 0.6 dB loss for P1.
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Beam vs. Antenna Efficiency
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Figure 4.3. Beam cfficiency and antenna efficiency for P1 symmetrical parabolic reflector
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Figure 4.7. P1 symmetrical parabolic reflector far-field pattern for 20° scan (286
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5. COMPUTATION AND OPTIMIZATION OF BEAM EFFICIENCY

When a reflector antenna is used for a radiometer application, the important figure
of merit is its beam efficiency, not its directivity. In contrast to directivity, there are
virtually no published results on beam efficiency for a reflector antenna. Typical beam
efficiency curves exist only for idealized distribution over a circular aperture [31-33).
These are useful for general trend prediction, but do not describe the dependence of the
exact reflector geometry and its feed.

In this chapter, several topics concerning computation and design aspects of beam
efficiency are addressed, namely,

(i) adiscussion of three definitions of beam efficiency,

@ii) the numerical accuracy problem arising from pattern computation codes based

on physical optics theory, and a method for overcoming this problem,

(iii) typical beam efficiency data for parabolic reflectors with a circular horn feed,

(iv) optimization of beam efficiency by a cluster of feeds.

5.1. Three Definitions
Beam efficiency is a measure of how well an antenna manages 10 transmit its power

within a prescribed narrow cone. It is defined as the percent of total radiated power

contained in the main beam
Pbenm
n= 5 x 100% (5.1)
feed

where Pjeeq is the power radiated from the feed of the reflector (not including the feed
mismatch loss). The unsettled question then is how the main beam is defined. Traditionally

the main beam is taken as an angular region within a circular cone with a half cone angle

Opeam [311,[18], where
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Opeam = polar angle measured from the main beam (where 6=0°) to the 5.2)
first null of the pattern.

The definition in (5.2) is sometimes difficult to apply. For a measured antenna pattern, the
first null is generally not symmetrically located in all cuts, and may not be clearly
identifiable. Hence, a more practical definition for the main beam is {18]

Bbeam = 2.5 X 0348 (5.32)
where

0348 = half beamwidth defined by 3 dB down points. (5.3b)
The second definition also has a drawback. While optimizing the beam efficiency of a
reflector antenna, it encourages excessive edge taper so that the 3dB beamwidth is very
wide. That leads to an antenna design with high beam efficiency but poor directivity and
poor aperture efficiency. This drawback is due to the fact that 834p is a moving target,
which prevents a fair comparison between two patterns with different edge tapers.

In light of the above discussion, we propose a third definition, namely, the actual
half beamwidth 034p in (5.3) is replaced by a nominal half beamwidth, which is a
prescribed number, not a moving target. For a given reflector diameter D, the nominal
beamwidth depends on how much one is willing to sacrifice the aperture efficiency for the
sake of improving beam efficiency. A good choice that conforms to current practice is

B34 = (—13)6/%)' (5.4)

This choice was arrived at by choosing an ideal aperture distribution with 20 dB edge taper.
This distribution (5.4) gives the correct location of the 3 dB down point. Therefore,
definitions 2 and 3 are the same for a reflector antenna having a 20 dB aperture taper. This
edge taper is chosen because it is a good compromise between low directivity loss (0.9 dB)
and high beam efficiency (98%, not counting spillover). If a reflector antenna does not

have a 20 dB edge taper, then definitions 2 and 3 can yield very different results.
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Definition 3, however, is better since it does not lead to the use of patterns with excessively

wide beamwidths as definition 2 does.

5.2. The Problem with Direct Computation
Given the secondary pattern of the reflector, a straightforward method to evaluate
power in the main beam, denoted by Ppeam, is to integrate the field over the main beam,

namely,

=t 2
Poan = 1201:”,“,“3' dQ (5.5)

where AQ is the half-cone solid angle. This works if the secondary pattern is known
accurately. To obtain a 2% accuracy in efficiency, the pattern near the main beam region
must be accurate within 0.086 dB. Such an accuracy is not attainable by standard pattern
computation methods, which are invariably based on the physical optics (PO) theory. The
reason can be traced to the fact that the PO does not conserve power. The finiteness of the
energy condition is not obeyed by the scattered fields which result from the assumed
surface fields [34]. Technically, this means that the divergence theorem can not be used in
deriving integral representations for these fields. If we carried out the integral in (5.5) over
the entire 47 space, the power in the pattern generally does not match the power incident on
the reflector, which is feed radiated power minus the spillover. This is due to truncation of
the surface currents at the reflector edge. We shall use an example to illustrate our point.
Consider a center fed parabolic reflector with

Reflector diameter = 2a = 100 A

FD =20

Feed: TE11 mode of a circular waveguide with diameter 1.8 A

located at the focal point.
Edge taper = 10dB
Spillover loss = 16% (-0.75 dB)
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Its secondary pattern calculated by a PO code is shown in Fig. 5.1. We integrate this
pattern to calculate the power within a cone with half cone angle Oone. The result is shown
in Fig. 5.2. Interpolating Fig. 5.2 conservatively out to 8 = 90° results in a total of less
than 96% power when spillover loss is added in. This clearly indicates that the secondary
pattern is not entirely accurate and, therefore, power is not conserved. Unfortunately, there
does not seem to be a simple fix to make PO-based pattern codes more accurate (adding
fringe current does not solve the present accuracy problem). Since the error is caused by
truncation of surface currents at the reflector edge, the error is less for cases in which the
edge taper is higher. For the same reflector with a 2.4 A radius feed (30 dB edge taper),
the sum of the radiated power and spillover power is 99%.
For the pattern in Fig. 5.1, let us compare the three definitions for the main beam:

0.86° using definition in (5.2)
Opeam =1 0.85° " (5.3a)
0.90° " (5.4)
which gives beam efficiencies, respectively, of 75.5%, 75.5%, and 75.6%. In general, the
difference in computed beam efficiency will not vary significantly (i.c., the difference in
efficiency is only a few percent) for values of Opeam calculated using the various

definitions, since the difference between the two solid cone angles is a thin ring located in
the neighborhood of a pattern nuil. When a much larger feed (3.0 1) is used, the respective
beam efficiencies from the three definitions are 90%, 90%, and 88%.

5.3. Indirect Computation of Beam Efficiency

In order to achieve beam efficiency results more accurate than those in Section 5.2,
an indirect method of computation will be described here. The calculated secondary pattern
is calibrated by an ideal aperture distribution, whose far-field pattern and power enclosed in

the far-field pattern can both be obtained via closed-form solutions. If the calculated
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pattern's power enclosed graph (e.g., Fig. 5.2) is matched carefully to an ideal pattern,
then the resulting beam efficiency calculation should be more accurate than for the direct
computation method.

The following definition is used for calculating beam efficiency by the indirect
method. The beam efficiency 1 is defined as

N=NpatNaccNfeed (5.6)
where the various elements are defined as follows:

Npat: The calculated secondary pattern is examined for relative accuracy. Causes
of inaccuracies could include overly sparse FFT grids or other errors caused by numerical
integration. At this point, inaccuracy due to nonconservation of power by the PO method
is ignored. It is only really necessary for the pattern to be accurate over the first few
sidelobes since that is where almost all of the power in the secondary pattern is located.

The cutoff point for the accurate region is denoted by 6,.c. Then the pattern efficiency is

defined as
P(Bpey,y)
npat = P(em) (5-7)
where P(0) is the power inside the cone half-angle 0 (Fig. 5.3).
TNace: The exact definition of Ny is
P(o,..)
= (5.8)

Nace = Bower in the actual pattern

Because of the nonpower conservation of the PO-based pattern code, it can be difficult to
calculate the power in the actual secondary pattern. Here, we propose an approximation.
An ideal closed-form solution for the far-field pattern is used. The following aperture
amplitude distribution is assumed:

Qp) =C+(1-ON1 - (p/)4P (5.9)
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where the parameter C is the aperture edge taper in decibels (ET = 20logC) and the
parameter P is used to change the shape of the taper (Fig. 5.4) [4]. A similar distribution is
used in Equation 2 of [31). If the feed blockage is negligible, then the far-field integration

over the aperture produces

T = ®a2[CA(kasin®) + (1 — C)Ap,(kasin6)] (5.10)
where

A =2"r(P+1)-J-';;(—?- (5.11)

The total amount of power in this far-field pattern can be easily determined. Note that the
pattern is plotted versus kasin®. For a given antenna, the reflector radius a is fixed and the
pattern truncates at kasin® = ka [4). This can then be converted into the cone half-angle
theta. Then, the T defined in (5.8) is approximated by

Tacc = TNacc(ideal) (5.12)
Treed: The feed efficiency, Need, is @ measure of how much of the power radiated
from the feed hits the reflector(s). This term takes into account spillover loss. In some
previous works it is referred to as feed efficiency factor [31], which is a function of the
feed pattern and the angle subtended by the reflector dish [35]. For a multiple reflector
antenna system, T\teed Would appear once for each reflector.
As an example of the indirect method described in (5.6), consider the following
case of a symmetric parabolic reflector with the following parameters:
Reflector diameter = 2a = 1,000 A
Feed: TE11 mode of a circular waveguide with diameter 1.8 A located at the
focal point
Edge taper = 10dB
Spillover loss = 18% (-0.85 dB)
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Its secondary pattern is shown in Figure 5.5. From the calculated pattern, we find Bpeam =
0.090° (using (5.4)) and we choose 0, = 4.2°. This leads to a pattern efficiency Tpa =
0.956 (Fig. 5.6). Using the ideal pattern with p= 1.0 and a 10 dB edge taper leads t0 MNacc
=0.997. The feed efficiency is Tgeea = 0-822. The resulting beam efficiency ism =78%.
On the other hand, a direct (conventional) calculation using (5.1) leads to ) = 76%. When
a 2.2 A radius feed is used, the corresponding efficiencies are 88% and 86%, respectively.
Therefore, as expected, the PO error leads to the efficiency being 1-2% low. A limitation
of the indirect method is that it can only be used in symmetric situations, since the ideal

pattern is symmetric.

5.4. Optimization of Beam Efficiency for Cluster Feeds
5.4.1. Use of cluster feeds
In some reflector applications a cluster feed consisting of multiple elements is used
instead of a single feed element. This cluster feed can be used in two different ways:
 One-to one Excitation in which only one feed in the array is used to produce
one beam. _
o Cluster Excitation in which a group of feeds (normally 7 to 50) is used to
produce one beam.
The cluster excitation method can produce a more desirable secondary pattern due to its
higher number of degrees of freedom. The complexity of the feed is also higher for the
cluster excitation method. The complexity is outweighed if sufficient improvement in the
results is obtained.
By properly setting the excitations of the cluster elements, it is possible to optimize
various performance parameters of the reflector antenna. In the past, this has been done for
optimizing the directivity for wide-angle scans [17,24,36], compensating reflector surface

distortion [17], reducing sidelobes [24,29,30], etc. In this section we apply the cluster
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excitation to optimize the beam efficiency. This optimization is solved by means of a
matrix formulation similar to that employed in [36].
5.4.2. Matrix formulation

Consider a reflector antenna with N feed elements (Fig. 5.7). When element m is
excited with a unit amplitude (J, = 1) while all outer elements are idle (J, = 0 for n = m),
the secondary pattern from the reflector is called the active element secondary pattern of
element m and is denoted by En(r). In particular, we are interested in the reference

polarization of Ex(r), namely,

ke
E,(OR'=Z—E(0.0), koo (5.13)

Here, R and C are two unitary vectors describing the reference and cross polarizations. If
all of the feed elements are excited with weighted amplitudes (Jy}, the composite

secondary pattern is given by
N
QO = I JES0.0) (5.14)
m=1

The radiated power within the main beam of pattern Q(8,9) is

Py, = %‘[ LmQQ‘dn (5.15)
N

N
=3 FeBuda= U BI

m=1 n=1

where Z, = 120 ohms, dQ = sinf d8 d¢ is the differential solid angle, and the

integration is over the main beam. The square matrix B has elements By

where
B, == j L E™(0.0)(E(0,0)] 40 (5.16)

The power radiated by the feed cluster may be calculated by integrating over the primary

pattern of the feed cluster or by integrating the secondary pattern over all space. These two
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integrals are roughly but not exactly equal [35]. For the purpose of this thesis the integral
over the secondary pattern at infinity, which is more valid, is used. This power is given by

N N
Ppeea = ZZJ;JnAmn =g"TAJ : (5.17)
where m=1 n=1 3
Am=7-| [ BT @ 00 (5.18)
space

The ratio of (5.14) to (5.16) is

Beameff. =1\ = = - (5.19)

It is now desired to find the J that optimizes the beam efficiency.

5.4.3. Optimization of beam efficiency

Given Hermitian matrices A and B, we wish to maximize 1} in (5.19). It is well-

known that A can be diagonalized in the fashion

U-AU =D (5.20)
where

U=a unitary matrix formed by U, ,U,, ...,Un},

a, ,U, =an eigenvalue and its coresponding eigenvector of A,

D= diagonal matrix with diagonal elements d,, = oty .
Substitute |

A=(ONC, whereC=D U (5.21)
where use is made of the fact that l-_J‘T = I=J_l. Introduce a new unknown K in terms of

the unknown J,
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=

oy, ' (5.22)

K=CJ=

Then (5.19) can be written as

T =
LK 5.23)
K'K
where
1 1
= = 2 ==1= =-‘§-
F=D U BU (5.24)

Equation (5.22) is the Raleigh quotient in the matrix theory [37]. The maximum value of 1|

is

N = Amex. (5.252)
which occurs when
K = Voax (5.25b)

Here, Aps is the maximum eigenvalue of ?, and Vp, is the corresponding eigenvector.

From the relation
F Voax = Amax Vinax (5.26)
and (5.23), it can be shown that -
e A'B Woe= Amex Wenax (5.27)
L
W, =UD  Vgu (529

Next the solution of J that maximizes 7 is desired. From (5.21), (5.24), and (5.27), we
obtain
= =°T
J=UU W_,=Wn (5.29)
In conclusion, given a feed element cluster with a known geometry, the maximum
achievable beam efficiency 1) is obtained by using the element excitations (within a scaling
constant) contained in J in (5.28), which depends on the clement pattern matrices in

(5.16) and (5.18).
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5.5. Results and Discussion
5.5.1. Power as a function of sidelobes

It is of interest to know what percentage of power is located inside a certain number
of sidelobes. For example, if 9% of the far-field power is within the first three sidelobes
for a given far-field pattern, then the integral over the secondary pattern to determine this
power need only cover the solid angle covering the first three or four sidelobes. For the
ideal pattern described in Section 5.3, the integral is closed form (5.9) and the enclosed
power can be readily found. The power inside the first, second, and third nulls as a
function of the aperture edge taper is shown in Figure 5.8. This indicates that for patterns
with high edge tapers, the total radiated far-field power can be approximated by integrating
over the cone containing the main beam and first three sidelobes.
5.5.2. Efficiency of reflector antennas

The results in Figure 5.8 for the ideal aperture distribution do not show the
dependence on antenna geometry and feed pattern. In order to study the efficiency of a
reflector antenna, the actual pattern must be used instead of the idealized pattern in (5.10).
It is interesting to observe that, for a reflector antenna, high efficiency is achieved by severe
"underillumination." By undcﬁ]lurninationb, we mean that both the main beam and part of
the first sidelobe of the feed pattern are intercepted by the main reflector. This point will be
explained further in Section 5.5.3.
5.5.3. Dependence of beam efficiency on feed size

Consider a parabolic reflector fed by a single circular waveguide with the following

parameters:
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Reflector diameter =D = 1,000 A
f/D ratio: f/D = 1.0 and f/D = 0.4
Feed: TE11 mode of a circular waveguide with diameter 2a at the focal
point
We consider the cases:
Case 1: Symmetric reflector
Case 2: Offset reflector (lower edge of reflector is on the parabolic axis)
The variation of beam efficiency with respect to feed radius is shown in Figure 5.9a for the
symmetric case and in Figure 5.9b for the offset case. The corresponding results for
directivity are shown in Figures 5.10a and 5.10b, and for edge taper in Figures 5.11a and
5.11b. Itis interesting to note that
1. Optimum efficiency and optimum directivity do not coincide.
2. Near optimum efficiency occurs for edge tapers 2 20 dB but optimum efficiency
occurs when the reflector is slightly "underilluminated” (i.e., the first null
hits the reflector near its edge).
Optimum directivity occurs for a 12-15 dB edge taper.
5.5.4. Scanned beam
A single symmetric reflector with a single circular waveguide feed is used. The f/D
ratio is 2.
Reflector diameter =D = 1,000 A
Feed: TE11 mode of a circular waveguide located at the focal point.
Two feed radii are examined. The information for them is given in Table 5.1.

Table 5.1. Information for scanned reflector antennas

Radius (\)  Edge taper (dB) Obeam (2) Opeam (4) Spillover loss (dB)

1.8 10 0.35° 0.36° -0.85
2.2 20 0.36° 0.36° -0.44

78



Scanning is accomplished by tilting the reflector. When the reflector is tilted by a.°, the
beam is scanned by angle O, ~ 20 (Fig. 5.12). This is known as the mirror effect and it
more than doubles the maximum scanning ability of an antenna when compared to that of
the usual method of shifting the feed and keeping the reflector fixed. The results are shown
in Figure 5.13.

An /D ratio of 2 is very large but large f/D ratios contribute to much better scanning
results. As an example of this, a comparison of beam efficiencies is made between the
2.2 A case above and a third case. This case uses a 1,000 A reflector with /D = 0.4. A
feed radius = 0.7 A is used to maximize the on-axis beam efficiency. The nominal half-
cone angle is Bpeam = 0.36° (5.4) and the first null is at Opeam = 0.44° (5.2). The spillover
loss is very low (-0.16 dB) and results in a very high on-axis beam efficiency of 94.7%.
However, even for small scans, the antenna with the higher f/D ratio has a much higher
beam efficiency (Fig. 5.14).

5.5.5. Cluster feed
A single symmetric reflector is used. The f/D ratio is 0.4.
Reflector diameter = 2a = 1,000 A
Feed: Seven-element hexagonal cluster of circular waveguides excited by
the TE11 mode. The feed radius is 0.7 A. Cluster is centered at the
focal point. Element spacing is 1.42 A.
Spillover loss = -0.16 dB (on-axis with only the center element lit)
The excitations of the feed elements are chosen as above to maximize beam efficiency. In
Figure 5.15, results for scanning bjr an optimized seven-clement hexagonal cluster feed
(ring of six elements surrounding one element) are compared to those for an antenna with a
single element of the same type as those used in the cluster feed. The feed element size is

chosen so that beam efficiency is optimized for a single element in the unscanned case. For

this reason, at small scan angles the optimal result comes from using very small excitations
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on the outer elements; as a result, the improvement is small. The improvement due to using

the more complex cluster feed is more evident for wider scans. In this case, the efficiency

improved by over 10% for some scan angles.
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Figure 5.1. Secondary pattern for reflector antenna with f/D =2.0 and a 10 dB edge taper.

The feed is an open-ended circular waveguide of radius 1.8 A excited by the
TE11 mode.
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Figure 5.7. A reflector antenna with a feed cluster. The secondary pattern duc to the
excitation of element 2 (J2 = 1 and all other Jn = 0) is E2.
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Figure 5.8. Power enclosed within the main beam and first two sidelobes for the ideal
aperture distribution given in (5.10). The power is shown as a function of the
edge taper of the feed aperture distribution. Note that the curves level out for
edge tapers greater than 20 dB.
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Figure 5.9a. Variation of beam efficiency (using definition in (5.4)) with feed radius for a
symmetrical antenna with various f/Ds. The feed is an open-ended circular
waveguide.
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Figure 5.11a. Variation of edge taper with feed radius for a symmetric antenna with
various f/Ds. The feed is an open-ended circular waveguide (cutoff occurs

if the radius is roughly less than 0.4 }).
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if the radius is roughly less than 0.4 1).



Figure 5.12. The beam is scanned by tilting the reflector and keeping the feed fixed.
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circular waveguide excited by the TE11 mode.
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6. USE OF FREQUENCY SELECTIVE SURFACES IN
REFLECTOR ANTENNA DESIGN

Frequency selective surfaces (FSS) are very valuable for the design of multiband
reflector antennas. In a standard antenna design, it is desired to place the phase center of
the feed at the focal point of the main reflector. However, in multiband applications it is
often necessary to use more than one feed. In this case the feeds must be kept physically
separate. This can be achieved by placing one or more of the feeds at an image point of the
focal point. This is often done in dual reflector configurations, such as cassegrainian or
gregorian. In a cassegrainian configuration, the subreflector is located between the main
reflector and its focal point (Fig. 6.1). An additional feed could be placed at the focal point
of the main reflector, but its energy would be blocked by the subreflector. This problem is
avoided if the subreflector is transparent to the energy emitted behind it, but reflects the
energy emitted from the cassegrainian feed. This effect can be achieved with use of an
ESS. In this chapter, the use of FSS in the design of the ATDRSS triband reflector

antenna is examined.

6.1. The ATDRSS Project

NASA’s Tracking and Data Relay Satellite System (TDRSS) presently provides a
vital link in space communications. The TDRSS satellites substantially increase earth-to-
space link availability and provide a near continuous exchange of information. A single
TDRSS satellite can transmit and receive high-data-rate information to and from low carth
orbiting spacecraft via two single access (SA) reflector antennas. These steerable SA
antennas can provide simultancous S-band and Ku-band communications with one
spacecraft at a time. Communications to and from orbiting spacecraft can also be
accomplished via an S-band multiple access phased array antenna, though at much lower

data rates. A separate space-to-ground link antenna operating at Ku-band provides



communications between a TDRSS satellite and the TDRSS White Sands Ground Terminal
in New Mexico.

In order to provide additional bandwidth for increased communications demand, the
advanced TDRSS, or ATDRSS, project has been proposed and is scheduled for launch in
1997. As conceived, the ATDRSS satellites will incorporate Ka-band capability in the SA
reflector antennas, in addition to the S-band and Ku-band services. Therefore, in order to
meet these future requirements, the development of a triband reflector antenna for ATDRSS

is critical.

6.2. Design

There are two approaches to designing a triband reflector antenna. Both approaches
use a single-band feed for S-band and isolate the S-band from the other two bands by
means of a frequency selective surface (FSS). In the first approach a multiband feed
(usually a corrugated horn) is used. In the second approach two single-band feeds are used
which are isolated from each other by means of a second FSS. Both approaches have
pluses and minuses. The multiband feed is more compact and avoids additional FSS losses
[38-40). However, design of a multiband feed is much more difficult than that of a single-
band feed. It is more difficult to optimize parameters such as feed size and taper.
Performance will further degrade if the phase centers of the two bands do not coincide. In
contrast, the horn design for the second approach is much easier and feed losses will be
lower. The design will not be as compact since there is an extra feed and FSS. The
challenge is in c_lesigning a low-loss FSS. The task is made more challenging by the
relatively small separation (about 2:1) between the Ka-band and Ku-band. FSSs are today
typically used to discriminate between bands with a 6:1 ratio (for example between S-band
and Ku-band).

In this thesis, we have chosen the second approach, in which three separate feeds

are used. It is felt that the improvement in feed performance will not be offset by the higher
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FSS losses. It is also easier to analyze the feed system in the second approach since the
design of the multiband feed is to some extent a hardware design problem. Each feed is
optimized for a single band and the feeds are isolated by means of frequency selective
surfaces (FSS). The FSS will transmit certain frequencies while reflecting others. Two
reflector antenna configurations are presented below, an offset single reflector (Figs. 6.2,
6.3) and a symmetric shaped dual reflector (Figs. 6.4; 6.5). The advantages of each
design are presented in Table 6.1.

Table 6.1. Design summary

Main reflector FSS Advantages
parabolic, offset 2 planar planar FSS only
Fig. 6.1 smaller diameter main reflector (12.5 ft.)

solid reflector, not mesh

shaped, symmetrical | 1planarand | smaller volume (shorter focal length)

Fig. 6.3 1 curved similar to existing TDRSS design

6.2.1. FSS design

Planar FSSs have an advantage in that they can be theoretically analyzed by
methods such as Floquet modes. Curved FSSs must be analyzed as being locally flat. The
initial design is then tested to observe the perturbation caused by the curvature. Several
iterations are then usually necessary to completely compensate for the effects of the
curvature.

FSS designs have been developed that will provide the necessary transmission and
reflection characteristics. The FSSs use ring elements, due to the circular polarization of

the radiated field. A total of four FSSs were designed. FSS1 and FSS2 are used in the
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offset configuration. FSS3 and FSS4 are used in the symmetric configuration. A

breakdown of the requirements for cach surface is shown in Table 6.2.

Table 6.2. FSS requirements

FSS S-band Ku-band Ka-band
1 transmit - reflect
2 transmit reflect transmit
3 transmnit reflect reflect
4 -— transmit reflect

FSS3 is the only curved surface, being the subreflector of the dual cassegrainian design.
Using these designs, far-field pattems have been computed for the above antenna systems,
including losses due to the FSS effects.
6.2.2. Offset reflector

The offset configuration uses a reflector with a diameter of 150", a focal length of
130", and an offset height of 15". Both FSSs are planar. FSS1 is farther from the
reflector and is orientated vertically (Fig. 6.3). This surface uses Arlon DICLADS880 that is
15 mil thick and has a dielectric constant € = 2.17 - j0.0017. The lattice angle is 60° (as it is
for all four FSSs); the dimensions for the ring elements are shown in Figure 6.4. FSS2is
tilted 5° from vertical. The substrate is Arlon DICLAD880 but the thickness is 30 mil. The
dimensions of the ring elements are shown in Figure 6.5. All feeds are assumed to be
corrugated circular homns. The S-band feed has D = 10" (1.8 A at 2.2 GHz), the Ku-band
has D = 1.6" (2.0 A at 14.9 GHz), and the Ka-band feed has D = 0.94" (2.0 A at 25.25
GHz).
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6.2.3. Symmetric reflector

The symmetric configuration uses a cassegrainian subreflector. The main reflector
has D = 168" and a hole at Fthe vertex 28" in diameter. The subreflector has D = 28". The
subreflector is shaped to avoid sending energy into the hole in the main reflector. The main
reflector is shaped to avoid energy blockage by the subreflector (Fig. 6.6). This shaping is
subtle and at S-band frequencies the main reflector and subreflector appear to be parabolic
and hyperbolic in shape respectively. The Ku-band and Ka-band feed structures are
inside the shadow cast by the subreflector on the main reflector so that feed blockage losses
will be minimal (Fig. 6.7). The S-band feed is located at the focal point of the main
reflector. At S-band the main reflector can be considered to be parabolic because the
deviation due to shaping is only a fraction of a wavelength. This feed is a crossed dipole
with 4.4" diameter subreflector. The Ku-band and Ka-band feeds are corrugated circular
horns that are 3.6" and 1.88" in diameter, respectively. These feeds are significantly larger
than the corresponding feeds for the symmerrical case. The offset design has f/D = 0.87.
For the dual reflector design, the distance from th; feeds to the subreflector is about 1.5
times the diameter of the subreflector. Therefore, the Ku-band and Ka-band feeds for the
dual design need to be more directive to maintain spillover losses comparable to those for
the offset design. The subreflector is FSS3, transmitting at S-band and reflecting at the
higher frequency bands. The substrate is Arlon DICLADS810 with dielectric constant € =
10.5 - j0.0158 and thickness 14 mil. The dimensions of the periodic element are shown in
Figure 6.8. FSS4 is tilted 35° from vertical. The subtrate is Arion DICLADS880 with a
thickness of 200 mil. There are two layers with the rings facing inward towards each
other. The separation between the layers is 84 mil and is also filled with DICLAD880.
The dimensions of the ring elements are shown in Figure 6.9.
6.2.4. Comparison of reflector size

Most Phase A designs for ATDRSS have proposed 16' diameter mesh main

reflectors {41,42). The large diameter compensates for blockage, feed losses, and RMS
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errors which are higher for a mesh surface than for a solid surface. By combining high
feed efficiency and a shaped reflector to lower blockage losses, the size of the reflector is
reduced to 14' for our symmetric design. For the offset case, there is no blockage. An
assumption of a solid surface reduces RMS surface losses. In this case a digmeter of 12.5'
is achievable while meeting link budget requirements. If the solid reflector is hinged to
allow folding, then it is possible to fit a solid reflector of this size on the launch vehicle

(Space Shuttle or Atlas-Centaur).

6.3. Results

A physical optics-based model for an open-ended circular waveguide is used as the
feed. Physical optics is used to calculate the field incident on the reflector (or main reflector
in the case of the dual reflector design). An FFT is then used to calculate the far-field
pattern.

It is important to integrate the effects of the FSS into the reflector analysis, because
the transmission and reflection coefficients of the FSS are a function of the incident angle
of the radiation. The theta and phi components of the incident field interact differently with
the FSS. Therefore, the incident wave must be broken down into its theta and phi
components as defined in the FSS coordinate system. The local z-axis is chosen as being
the normal to the surface at the point of intersection, and directed into the same half-plane
as the global z-axis (Fig. 6.10). The reflected and transmitted fields are then related to the
incident field via a matrix formulation.

[ w | [u ra“[ Hg]
| B | Ly 6l H
ot | B ] rzw{ n}

i H? Iy I4)

6.1)
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In the case of a transparent surface for transmission and a perfect electrical conductor (pec)

surface for reflection, (6.1) reduces to

rH{’ =[10] H?
01
| HY | | HP |
H® -10} H?
and =
L mp ) 10 L] mp

6.2)

In the reflector system the energy spreads out as it leaves the feed. Therefore, it is
incident on the FSS over a wide range of incident angles (Fig. 6.11). For example, in the

offset configuration the energy from the Ka-band feed is incident on FSS1 at a range of

incident angles of 6.6° < 8 < 64.8°. The strength of the field also varies as a function of the
angle from the feed axis. In addition, the losses due to phase shifting by the FSS must also
be considered. These factors can not be adequately accounted for unless the FSS effects
are integrated into the reflector system. In general, the FSS losses are less than 1 dB and
are usually on the order of a few tenths of a dB. The most noticeable effect is reduction of
the null in the cross-pol at boresight. However, in all cases the cross-pol is at least 20 dB
below the ref-pol. The results for the two configﬁrations are shown in Table 6.3. The
FSS losses are shown in parentheses. TRW's estimated link budget requirements [43] are

also shown for comparison.

Table 6.3. Directivity results

Band Frcq..(GHz) Offset dir. (dB) | Symmetric dir. (dB) | Required (TRW est.) (dB)
S 2.2 37.2 (0.1 377 (0.1) 36.0
Ku 13.7 --- 54.6  (0.6) 51.0
Ku 14.9 54.0 (0.1) 554 (0.5 51.0
Ka 25.25 58.7 (0.1) 60.2 (0.4) 54.0
Ka 27.5 58.8  (0.6) 603  (1.0) 54.0




The 2.2 GHz, 14.9 GHz, and 25.25 GHz frequencies are the center frequencies
(the lower edge of the receive band) for the S, Ku and Ka bands, respectively. Results
were computed for two additional frequencies where FSS losses were 2 maximum. For
both designs, at the upper edge of the Ka band (27.5 GHz), increased FSS losses almost
completely negated the increase in directivity resulting from using the same-size reflector at
a higher frequency. For the symmetric design, FSS losses in the Ku band were highest at
the lower band edge (13.7 GHz). In all other cases, the FSS losses at the band edges were
lower than or roughly equal to losses at the center frequency. At every frequency, the
offset design has lower directivity than the symmetric design, despite having lower FSS
losses. This is due to the fact that the offset design uses a smaller reflector.

It should be noted that Table 6.3 does not give the complete picture. The computed
directivities shown include spillover/illumination losses, blockage losses, and FSS losses.
They do not include reflector surface losses, radome losses, feed losses, and feed line run
losses. These losses are taken from published Phase A results [41-43]. When these
additional losses are added, all link budget requirements are still satisfied. The gain margin
(over TRW’s Phase A report specifications [43]) is shown in Table 6.4. The margin is

Table 6.4. Antenna gain margin over TRW specifications

Gain Margin (dB)
Band Freq. (GHz) Offset Symmetric
S 2.2 0.7 0.8
Ku 13.7 23 2.3
Ka 27.5 3.3 2.9

computed in each band for the frequency at which the margin is a minimum. This is 2.2

GHz for S-band and 27.5 GHz for the Ka-band. The actual Ka-band margin is actually
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slightly lower, since the TRW Ka-band specification is for 25.25 GHz, not 27.5 GHz.
For the Ku-band, the margin is computed at 14.9 GHz for the offset design and at 13.7

GHz for the symmetric design.

6.4. Physical Layout

The offset fed single reflector antenna configuration has been selected for
integration into proposed ATDRSS designs. The offset design uses a solid reflector and
planar FSSs, which can be accurately modeled by existing computer programs using modal
analysis. The offset fed single access antenna geometry shown in Figure 6.2 has been
adapted for a conceptual spacecraft design. Some of the assumptions for this design are (a)
an Atlas Centaur launch vehicle, (b) an Advanced Communications Technology Satellite
(ACTS) size spacecraft body and ACTS type solar arrays and (c) the S-band amplifier can
be located in the spacecraft body and the Ku- and Ka-band equipment can be located in the
antenna arms near the feed horns.

CADAM drawings have been completed for the design concept and a 1/13th scale
model has been constructed, employing this offset-fed antenna configuration. Figure 6.12
is a photograph of the spacecraft model in the launch ready state. Figure 6.13 shows the
spacecraft model with both offset fed antennas fully deployed and pointed north and south.
This configuration allows for a full 360° offset antenna scanning capability. Lunar access,
which has been recently added to the ATDRSS mission, is achievable with this
configuration.
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Main reflector

Focal point

Subreflector
(FSS)

Figure 6.1. Cassegrain antenna. The focal point of the parabolic main reflector coincides
with a focal point of the hyperbolic subreflector.



Figure 6.2. Offset design for proposed ATDRSS triband reflector antenna. The single
reflector dish is parabolic and has a solid surface. The reflector is 150” in
diameter with an offset height of 15” and a focal length of 130™.
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Figure 6.3. Close-up of offset design feed system. All three feeds are corrugated horns.
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Figure 6.4. Geometry for FSS1.
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Figure 6.5. Geometry for FSS2.

Figure 6.6. Dual symmetric design. The reflector is shaped and has a diameter=168".
The subreflector has diameter=28".
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Figure 6.7. Close-up of the symmetric design feed system. The S-band feed is a crossed
dipole with reflector, and the other feeds are corrugated circular horns.
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Figure 6.8. Geometry for FSS3.
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- Figure 6.9. Geometry for FSS4.
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Figure 6.10. Interaction of wave with a surface. In general the surface may be curved.
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Figure 6.11. Since the feed does not emit a plane wave, the energy radiated is incident on
a surface over a broad range of incident angles.



NASA
C-91-04635

1/13 Scale Model of Advanced Tracking and Data Relay
Satellite (ATDRS) Concept Stowed for Launch
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/  access phased
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Figure 6.12. Model of proposed ATDRSS satellite showing the launch-ready
configuration (photo courtesy of NASA).
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1/13 Scale Model of Advanced Tracking and Data Relay
Satellite (ATDRS) Concept Configured for Lunar and
Out of Ecliptic Plane Missions
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downlink antenna
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pointed toward lunar
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CO-91-48001

Figure 6.13. Model of proposed ATDRSS satellite showing the triband reflector antennas

in the fully deployed mode (photo courtesy of NASA).
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7. CONCLUSIONS

We have expanded existing methods of calculating far-field patterns for reflector
antennas to include many of the difficulties presently encountered in reflector antenna
design and analysis. By using methods of analysis that are generalized and allow for more
variation, the scope of problem types that may be tackled is broadened. The purpose is to
develop methods of analysis flexible enough to handle tomorrow’s problems as well as
today’s. Using these techniques, problems such as spillover loss for reflector antenna
waveguide feeds, optimization of beam efficiency for reflector antennas, and the analysis of

reflector antenna systems including frequency selective surfaces have been addressed.

119



(1]

[2]

(3]
(4]

[51

(6]
(71

(8]
[9]

[10]

[11]

[12]

(13]

(14]

[15]

[16]

120
REFERENCES

L.J. Chu, "Calculation of the radiation properties of hollow pipes and horns,"
J. Applied Phys., vol. 11, pp. 603-610, 1940.

J. R. Risser, "Waveguide and hom feeds," ch. 10 in Microwave Antenna Theory and
Design, S. Silver, Ed. New York: Dover Publications, pp. 334-347, 1965.

C. A. Balanis, Antenna Theory, New York: Harper & Row, pp. 473-486, 1982.

Y. Rahmat-Samii, "Reflector antennas," ch. 15 in Antenna Handbook, Y. T. Lo and
S. W. Lee, Ed. New York: Van Nostrand Reinhold, pp. 15-89 to 15-93, 1988.

A. D. Yaghjian, "Approximate formulas for the far field and gain of open-ended
rectangular waveguide," /EEE Trans. Antennas Propagat., vol. AP-32, pp. 378-384,
April 1984,

S. Silver, Microwave Antenna Theory and Design. New York: McGraw-Hill, 1949,

J. F. Kaufman, W. F. Croswell, and L. J. Jowers, "Analysis of the radiation
patterns of reflector antennas, " I[EEE Trans. Antennas and Propagat., vol. AP-24,
pp. 53-65, January 1976.

Y. Hwang, C. H. Tsao, and C. C. Han, AP Digest, p. 88, May 1983.

P.Lamand S. W. Lee, "Analysis and optimization of reflector antenna systems," EM
Lab Report No. 85-9, University of Illinois, Urbana-Champaign, November 1985.

Y. Rahmat-Samii, P. Cramer Jr., K. Woo, and S. W. Lee, "Realizable feed-element
patterns for multi-beam reflector antenna analysis,” /EEE Trans. Antennnas and
Propagat., vol. AP-29, pp. 961-963, 1981.

S. W. Lee, "Uniform asymptotic theory on electromagnetic edge diffraction: A
review,” EM Lab. Rep. 77-1, University of Illinois, Urbana-Champaign, Jan.
1977.

R. C. Menendez and S. W. Lee, "On the role of the geometrical optics field in
aperture diffraction,” IEEE Trans. Antennas and Propagat., vol. AP-25, pp. 688-
6935, 1977.

S. W. Lee and G. A. Deschamps, "A uniform asymptotic theory of electromagnetic
diffraction by a curved wedge," IEEE Trans. Antennas and Propagat., vol. AP-24,
pp. 25-34, 1976.

D. S. Ahluwalia, R. M. Lewis, and J. Boersma, "Uniform asymptotic theory of
diffraction be a plane screen,” SIAM J. Appl. Math., vol. 16, pp. 783-807, 1968.

R. M. Lewis and J. Boersma, "Uniform asymptotic theory of edge diffraction,” J.
Math. Phys., vol. 10 pp. 2291-2305, 1969.

A. C. Ludwig, "The definition of cross polarization," [EEE Trans. Antennnas and
Propagat., vol. AP-29, pp. 580-586, 1981.



[17] C. C. Hung and R. Mittra, "Wide-angle scanning for reflector antennas,” URS/
Symposium Digest, pp. 75, 1983.

[18] J. C. Shiue and L. R. Dod, ch. 22 of Antenna Handbook , Y. T. Lo and S. W. Lee,
Ed. New York: Van Nostrand Reinhold, pp. 15-89 to 15-93, 1988.

[19] P. T. Lam, S. W. Lee, C. C. Hung, and R. Acosta, "Strategy for reflector pattern
calculation: Let the computer do the work," I[EEE Trans. Antennas and Propagat.,
vol. 34, pp. 592-594, 1986.

[20] H. C. Minnett and B. MacA. Thomas, "Fields in the image space of symmetrical
focusing reflectors," Proc. IEEE, vol. 115, pp. 1419-1430, 1968.

[21] A. W. Rudge and M. J. Withers, "Design of flared-horn primary feeds for parabolic
reflector antennas," Proc. IEEE, vol. 117, pp. 1741-1749, 1970.

[22] H. H. S. Luh, "On the radiation pattern of a muitibeam antenna,” /EEE Trans.
Antennas and Propagat., vol. AP-24, pp. 101-102, 1976.

23] Y. Rahmat-Samii and S. W. Lee, "Applications of the conjugate field matching
technique to reflector antennas - a critical review," URSI Digest, pp. 85, 1981.

[24] A. V. Mrstik and P. G. Smith, "Scanning capabilities of large parabolic cylinder
reflector antennas with phased-array feeds," /EEE Trans. Antennas and Propagat.,
vol. AP-31, pp. 756-763, 1983.

[(25] C. C. Hung and R. Mittra, "Secondary pattern and focal region distribution of
reflector antennas under wide-angle scanning," AP Digest, vol. AP-31, pp. 463-470,
1983.

[26] H.Y. Jong, B. Popovich, W. R. Adams, and A. W. Love, "Analysis of paraboloidal
reflector fields under oblique incidence,” AP Digest, vol. 1, pp. 305-308, 1984.

[27] R. J. Acosta, "Compensation of reflector surface distortion using conjugate field
matching," AP Digest, vol. 1, pp. 259-262, 1986.

[28] P.T.Lam, S. W. Lee, D. C. D. Chang, and K. C. Lang, "Directivity optimization of
a reflector antenna with cluster feeds: A closed form solution," /EEE Trans.
Antennas and Propagat., vol. AP-33, pp. 1163-1174, 1985.

[29] R. Acosta, A. Zaman, E. Bobinsky, A. R. Cherrette, and S. W. Lee, "Case study of
active array feed compensation with sidelobe control for reflector surface distortion,"
AP-S International Symp. Digest, vol. 2, pp. 863-867, 1988.

[30] R. Acosta, "Active feed array compensation for reflector antenna surface distortion,”
NASA TM100826, NASA Lewis Research Center, Cleveland, OH, June 1988.

[31] R.T. Nash,"Beam efficiency limitations of large antennas," /EEE Trans. Antennas
and Propagat., vol. AP-12, pp. 918-923, December 1964.

[32] W.F. Croswell, Section 18 of Electronics Engineer’s Handbook, Ed. D. G. Fink.
New York, McGraw-Hill, 1976, p. 18-13 - 18-15.

121



122

[33] Cé ? Balanis, Antenna Theory. New York: Harper & Row, 1982, Fig. 11-21, p.
488.

[34] J. A. Asvestas,"The physical optics method in electromagnetic scattering,” Journal
of Math. Phys., vol. 21, pp. 290-299, February 1980.

[35] S. W.Lee and M. L. Zimmerman, "Reflector spillover loss of an open-ended
rectangular and circular waveguide feed," IEEE Trans. Antennas and Propagat.,
June 1990, pp. 940-942.

[36] M. Zimmerman, S. W. Lee, B. Houshmand, Y. Rahmat-Samii, and R. Acosta,"A
comparison of reflector antenna designs for wide-angle scanning," Microwave and
Optical Technology Letters, pp. 233-235, July 1990.

{371 David K. Cheng, "Optimization techniques for antenna arrays," Proc. IEEE, vol. 59,
No. 12, December 1971.

[38] H. Kumazawa, M. Koyama, and Y. Kataoka, “Wide-band communication satellite
antenna using a multifrequency primary hom,” IEEE Trans. Antennas and Propagat.,
vol. AP-23, pp. 403-407, May 1975.

[39] M. S. Narasimhan and M. S. Sheshadri, “Propagation and radiation characteristics of
dielectric loaded corrugated dual-frequency circular waveguide horn feeds,” IEEE
Trans. Antennas and Propagat., vol. AP-27, p. 858-860, November 1979.

[40] J. C. Lee, “A compact Q-/K-band dual frequency feed horn,” /EEE Trans. Antennas
and Propagat., vol. AP-32, pp. 1108-1111, October 1984.

[41] GE Astro Space, Tracking and data relay spacecraft (TDRS) study, advanced concept
design report (SE-904), vol. 3, prepared for NASA GSFL, April 1989,

[42] Ford Aerospace Corp., Space Systems Division, TDRSS advanced concept design
report (SE-904), vol. 1, prepared for NASA GSFL, April 1989.

[43] TRW Space & Technology Group, Tracking and data relay satellite study, advanced
concept design report (SE-904), prepared for NASA GSFL, April 1989.



123

APPENDIX

796S°€€€-(L1T) Xed ‘8LZ0°€EE-(L1T) IPL

10819 I “BueqI() “UAID M 90V1
SIOUI|[] JO ANSIAATU() ‘AI0JRIOQR T J1IAUSRWOIIOI[H

7661 ‘Arenuef
UASUQISLIYD) ‘JA PUB IN UBIS 99T M °S

Apmg SSA YNy :SSAALV

[-264D Hoday 1oy,



124

SSH-10199[Ja1 I0J 9p0d
10)ndwiod 29 sisAreuy pajerdajuy dofoad( *¢

SSd v usIsaq '
CWAS pue 7 19SJJO :SI0109[Jo1 0M] u3Isa( |

1661-0661 - MIAY



125

(you) Z

08L 09L O¥L 02L OOL 08 09 OF 02 0 o¢
A A (] A i A i 2 i

]

S ny Al

—— WST [

- 02

(014

NEAN

09

4/ N

\ .

08

001

octL

wOET=4 \

ST = ,0ST=a A\ .
-

ovli

- 091

081

C-19sJO U319 SSYALV

(Puy) X



126

youy
oyt 0zZ1 00T 08 09 ov (414 0 0z- ov- 09-
9054
08k

(13:13

\
IN/AER mE
]

SPIFWILTL = A

S

103231J9y padeys ¢-wiS SSAALV



127

(youn) Z
02 09 0Ss or 013 0¢ oL 0 Ot-
. L- °N|
\ olL-
pueq 8y
\ _ wd
— . PSP P °2
€SS \ /
/ oL
wgL1=81d
padeyg :¢c-wsg
MS {SUALY 0z

¢-wAQ ugIsa(] J10J JudWAFURILY PI]



128

Jae}S 03 %001 (%1)dPS0°0
/w mge  IOUIIINO) IIELING

(%6 )APSH"0 P34 -

(%9 )4PE0 :SSA

(% €T )IPSE'T
Jadey-[iids

pueq-§ je 10jo9yad 3j °CT SSUALV

Z 19SJO JO S0




129

Gain Margin over TRW Spec

...................

iy Sym-3 (14.3")

Offset-2 (12.5")

0 1 2 3
Gain Margin (dB)



130

"PAIpNIS 3q 03 SWAIQOIJ SSA ‘€

¢, Topow uoneinduwiod §S, INO SI 91eINOOE MOH *C

(. SS Sursn are oyM T

SSH -ASE ] 661



131

Seuuajue ¢

ZHD 0t ZHD 0T

is_

ZHD 01

D |

8°8C

06l Vel

(Jedor]) tejs-N uedef

ZHD 0t ZHD 0¢

ZHD 01

el |
te

o |

d |

8tl

L661 tuisse)) uelje)j]

ZHD 0t ZHD 0¢ ZHO 01

8L

:Vm_

>
Y4

A4

L661 SSAALV




132

ZHD OV 199 113 ¢¢

uel ], dew A

i

pasj fenp ny-§ (@
i

Keire nyf ]

10103[J21 Wy

uInjeg joue|J :IUIsSe)



133

Saoouu:/t 11

\

Jejs-N uedef




134

Aqsnpul ym uoneaddoo) p

SSAUALYV 03 parjdde §Sf 2d4) Jey§-N °¢

ﬁﬁm——-@w:ﬂ.:ﬂ SSA 99e)ang poAldn’) °¢

s10Ae] poddns yim §S4 uSisop-oy ' .
ased IOAR[-T}[NW 0] SISA[eue pualxsy | LT'C=3 Nug]
:qold \

UL LTI RRL

¢'£=3 NwQQs
qQUIOdK3UOH
LLELI
I

— ibovrerems
L I

[opoN 1dxyg

¢ce=3 Qg
§109US 20%v] 7

d
N

SJ9Aer] jr0ddng [edIURYIIA ‘T

SUR[qoOId SSHA



135

7965 €€€-(L17) Xed ‘8LTO'€EE-(L1T) 1AL

10819 I ‘BueqI() “URID M 901
STOUI[[] JO ANSIdATU() ‘AIOJRIOQR ] O1JAUTRWONII]

2661 ‘S 1390100
IN UBOS pUB UISUIISLIYD) ‘N ‘99T M 'S

SOPOJA] APINSIABAL
_m.xucU guis() sisAjeuy SS. suny-pIn

7-26dD 1oday [eotuyoo,



136

SSA Sun-yony jo sisAjeue pajre1dq ¢-6 1doYy «
MNSIA 76 19Q010() J0] sydeiZmalp :7-76 149y «
MSIA 76 Arenuef 10J sydeiS3marA :1-761doY «
:Apnis 7661 103 Lodoy ¢
1ozurejod surj-Iopueaw Jo sisAreue :3onpoid Spis y °¢
uonestjdde SSYCLY 0] suonemSyuod §SJ uszop e JurzumdQ g

poddns quiooKsuoy pue sSuL-Yory) YIm sisAreue §S Surdojaas( |

ApmS SSA 7661



137

woo-‘Lrp=3 S

MIIA 9PIS

[T OZ = YIpim 3ull 1ouut
[Tw ¢ = YIpIm 3uLl 19)n0

[ or [T $0¢

JUSWId 3ury

100-ONIY

-,09 = 9[3ue 201E|
[t LTZ = 9pIs ao1e|

Qome]



138

(Lioo-‘Lrp=3 0L
e FEELLE

MIIA 3PIS

[fw g = yipis Suur

[T 96

Juowa[a ury

<00-ONIY

-,09 = 9[3ue 20me|
[iux 86 = 9PIS 3oe|

ome|



139

MDA PIS

[T 07 = YpIM Ul souut
[fur 9 = IPIM FuLl I9NO

[T 2971 [t 061

JUSWI[d Sury

€00-ONIY

09 = o~wﬁm ME]
[ 6] = 9PIS 20me]

ome|



140

09 = 9[3ue dME|

¥ ¢ ‘ = ~—< =
(L100-°L1'D) =3 lur 8 = yIpim w:ﬁ [TW [ [ = 9pIS 201Y|

[t 901

MIIA IS JUSWIO Jury ome|

P00-ONIA



141

(oo-‘orp=3 MMESC

MIIA IPIS

[ O] = [Ppim Suu

[

JUAWIf3 Sury

S00-ONIA

ove

.06 = 9[3ue don)e[
[l 687 = 9pIs 3dme]

00
OO

Qome]



142

I I
8? o:v 3 EEN

00—z 1) =3|||| "™ 008

8? o:V 3 1 St 1
‘
MIIA IPIS

[ QO = ypim Jul

Jru

JUWIIPD Tury

900-ONIY

)74

06 = 9[3ue 20me|
[Tur R ="3PIS dNIe|

QO
OO

ome|



143

qQUIOOA3UO0Y Je[AIY

(cco0-‘sp7) = AR USRI 21

(00~ ‘s0°1) =3[ 2203 I OS

(550°0~ ‘st7) = AMUPISIE 21

(100~ ‘c€) =3 uoydey Mg

MIIA 9PIS

[fux Q] = YIpIm Sull Jouur
[t O] = YPpPIM 3ull 19Ino

oL [

Juswafd 3ury

LOO-DONIH

.09 = 93ue 20mE]
[TWr 691 = 3p1s adone|

ome]



144

st

(ZHD) Aduanbaay

145 (%Y (4% | £ 0¢ 67 8¢ LT
' ' " " 2 2 8 " " 8-
AN
;
(yd-q) A1 dup [
Q=1ud ‘.0e=e1y duj [ oc-
L00-3ury SSA i
.mﬁ
‘ b
@~ paanssauw :5)0 o1-
PIBNOIBY dAIR)
1
ml
¢
0

(dp) susa],



145

qQUIOOA3UOY JB[AIY
(§50°0- ‘s¥°7) = MU SR i 71

(00~ “50°'1) =3||| 03] |y Oce

(§S0°0~ ‘Sp°7) = JMUINSRWI 7 |

M3ITA 3pIS

['w 8 = (ppIs Suu Jouut
[T ¢ = PpIM Suwl J9no

o6l T yLe

JUSWIDP Sury

800-ONIA

o09 = 913ue e
[Iwr 08T = 9p1s e

ey



146

(zyn) ALduanbaay

ST vi 1 (4 11 01 6 8 L 9 S 14

el A_A A 8 Aeebeded Db, U U S Ak ) A d A 2 Ah bk ddndh b hd ko

-0=1yd=8jay) L duj

800-3ury SSA

-y

(dp) susaj,

™rr—

paJanseuwr :8)0(q

ey

P3JEINI|EI:IAIN)

LJun aan e o

T~




147

[T 97 = PPIM Suul Jouur

[lw 8 = yIpIM 3ul J9INO o09 = 9j3ue 30Ime|

[ L6 = 3pIS 0L

R unysj i ¢

00-v0'1)=3 o._o W 167

[ Zel [T 881

MITA 3PIS JURWAYd Fury | some]

600-ONIY



148

[fw 98] = IPIM SuLl JouUl
[tw 88 = YIPIM Juul Spprw

Oo0-v01)=3 o._o [ 06T

[T 26$

MIAA IPIS

[lw Z1 = ypim 3uu JaIno
9L

[T 486

JUWII Sury

010-ONId

.09 = 9[3ue 0me[
[t OFQ1 = 9p1s 0me]

me]



149

(ZH9) Aduanbaay

ov 6¢t 8¢ L€ 9¢ St 14 €€ (4% 1¢ 0¢t 6¢ 8¢ LT 97
WL ‘,0=14d ‘;0£=819u) duj [
(,09) e[ Jemauel], [
(180°0- ‘T’Z1) = uopsdd yim ' -
qejs [ @f & uo sduu 7 yyum SSA [
Y i
\~ -— } [
i/ i \ L

\

/ v
I ] \ I
7 Y L
_‘ / ._ // L
.\ \ .~ \ F
\\ ... / N ”
/ 9
paansed| i,/ } // -

)

NV o Nt
\ , \ /
R 1 [
I [
P j ”
(3urn) L1039y 3ulr WUy i
Aq pajenoed :pijos [

S1InsaI pood s9A13 A109y) Suur o1yl Suisn apod 1ndwo))

[ s2-

(gap) sues],



150

. JJ900 [epOW UMOWD{UN 9AOS 0} XLIJBW LIAUJ 4
uonenbs XInew JALIDP 0) SIOBJIIUI I8 SP[OL) YOIBIA 4 : SISA[eue S

JJ200 umouun YIim S9pOW [BIXeO)) X = FULI UO JUALIN))
(SSYALV ut pasn) S dAnIoeded 104

JJ200 umouyun Yim sapour [erxeo)) X = ded ur prarg
:SSH 2AnONpUL J0]

SOpOW IPINGIALM [RIXE0))




151

SSH PaAIND A1) 03 sjuem ApoqoN '8

10199[Ja1 195130 sardunr “)[inq 9q ued SS reueyd ‘Appuaun)) </
JUBISUOD OLIIDA[IP Ul 9,C 29 AIIOWOAS Ul [IW | :90URII[O0] JUAFULIS 9
suonestdde SSYQLV 10j SUSISOp SSA USL, °G

1oddns quIOdK3UOY JO UOTIBISPISUOD OJUT UINe) Jsnut uSIsap SSA v
SJUSWIAINSBAW AQ PIWLIJUOD UOTIOIPAL] *€

"‘pueq n-ey J0J Isnul ® SI 103y} SuLI YOIy, '

1S9q QU] ST JUSWI[A SULI OLIJUAdUO)) ‘|

uoIsSnjouo))



152

Technical Report GF92-3

FSS Analysis with Thick Multiple Rings

S.W.Lee and Y. M. Wang
October 1992

Electromagnetic Laboratory, University of Illinois
1406 W Green, Urbana, IL 61801
Tel (217)-333.0278, Fax (217)-333.5962



153

Abstract

A frequency selective surface (FSS) with concentric metal ring elements are analyzed by
a mode matching technique. The currents on the metal rings are represented by modal functions
of a coaxial waveguide. Both the circumferential and radial field variations are accounted for.
As aresult, the present analysis applies to thin as well as thick rings.

Several FSS configurations are designed for the ATDRSS application, which requires the
separation of three frequency bands: S, Ku, and Ka bands. A typical configuration consists of a
thin layer of periodic concentric metal rings printed on a 10 to 20 mil substrate. The substrate is
supported by a three-layer honeycomb structure for mechanical strength. All five layers are used
in the present analysis. Our calculated results are in good agreement with measurements.
Conclusions about using FSS for the ATDRSS and similar projects are given below.

(1) Among various FSS elements (dipole, tripole, cross, rectangular or circular aperture),
the circular ring element stands out as the best in terms of control of pass-stop bands, and
stability with respect to incident angle/polarization. Another advantage of rings is that rings of
different radii can be concentrically arranged for multi-band operations.

(ii) A theory and a computer code ‘cring.f' have been developed under the present project.
The code can be used to analyze, design, and optimize ring FSS. A dozen of good FSS designs
generated by cring.f are givgn. Some of them have been verified experimentally. Those designs
can serve as templates for future applications.

(iii) FSS designed for Ka-band operation requires very stringent tolerances, namely, the
geometrical dimension be accurate within 1 mil, and the dielectric constant be precise and
homogeneous within 5%. If those tolerances are not met, FSS performance deterioted rapidly.

(iv) Because of the tolerance problem, FSS in the Ka-band can be built with confidence
only in a planar form, but not in a doubly curved form that is required for a symmetrical
reflector antenna. As a result, the use of FSS in an ATDRSS-type reflector a is restricted to off-

set configurations. Of course, the tolerance problem will be eased as mechanical and material
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controls improve. Future use of FSS in a ATDRSS type system, even for a curved sub-reflector,
is promising.

This report consists of three parts. The first two are view graphics used in the project
review meetings in January and October, 1992. The last one contains the mathematical analysis

of the FSS with thick ring width.
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Introduction

Analysis of frequency selective surface (FSS) is rapidly becoming a mature subject in the
electromagnetic theory [1-2]. Invariably, FSS is modeled by an infinitely large periodic
structure. The reflected and transmitted fields in space are represented by discrete Floquet
modes. The analysis problem then becomes the determination of the Floquet modal coefficients
by matrix equations.

There are many different metal elements can be used and have been used to form a periodic
FSS. Examples are rectangular plate, circular plate, cross, Jerusalem cross, dipole, tri-pole,
rectangular rings, and circular rings. In the past years, the circular ring element has emerged as
the best element for applications because of its

* good pass band and good band characteristics,
* relatively stable performance with respect to incident angles and polarization, and
* concentric ring configuration that allows multiple band operation.
In the last year project, we used the ring elements to design a set of four FSS for the ATDRSS
application [3]. That design was done with a computer code named 'ring.f'.

In ring.f computer code, there are two assumptions on the structure of the FSS. First, the
width of the metal rings are assumed thin in terms of electrical wavelength. As a result, the
current on the ring has no radial component and no radial variation [4]. The second assumption
is that the metal ring sheet is rested on a single dielectric substrate.

Both assumptions turn out too restrictive for the ATDRSS application. To order to better
control FSS performance, it is necessary to use rings with wide width, say 0.4 wavelength width.
Furthermore, in actual reflector application, FSS is glued to a supporting honeycomb structure.
It has been found by a study a NASA Lewis that support structure has profound effect on the
FSS performance, and it must be taken into consideration in the analysis.

A new computer code named 'cring.f' is developed in the current project. The current on

the metal rings are represented by the coaxial waveguide modes, which have both circumferential
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as well as radial variation and field components. In cring.f, there is no restriction on the number

of substrate layers. Thus it can be used to model the composite structure of FSS and its

honeycomb support. A description of the analysis that cring.f is based on is presented in this

report. New designs for ATDRSS application are given in [5].
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Chapter 1. Mathematical Analysis of FSS

In this chapter, the formulations for calculating the transmission and reflection from an
infinitely large periodic frequency selective surface (FSS) are derived. The FSS is made of
capacitive multiple metal rings. The computer code used in the later chapters is based on the

formulations presented in this chapter.

1.1. Field Representation

The geometry of the rings is shown in Figure 1.1. In the mathematical analysis, let us
assume that the metal ring is not perfectly conducting, but with a finite surface resistivity R
(e.g., R, = 100 ohm per square). In the current version of the code, R, is set to zero. As will be
shown in the analysis, the addition of finite R;, is a relatively minor step. We can add the finite
R, capability to “cring” with a small effort.

The configuration in Figure 1.1 is horizontally stratified. A typical region defined by z; <z

< Z, the field is derived from two potentials

TE: E=-V x 2v). (1.1.1)
vy 1 d%y
Bx=-% P = KoZoh axdz
g ¥ Hooo L v
Yy~ ox ¥~ jkoZoh dyoz
1 /02
E.=0 H. = koZon (a?i*kge“)"’
T™: H=ZLOVx('z\‘p) (1.1.2)
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Figure 1.1. A resistive FSS illuminated by an incident plane wave.



MODE MATCHING FOR PERFECT CONDUCTING SCREEN

Inductive Capacitive
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Figure 1.2. Mode matching equations for a perfectly conducting screen.
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MODE MATCHING FOR RESISTIVE SCREEN
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Figure 1.3. Mode matching equations for a resistive screen.
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Due to the periodic nature of the problem, the total fields in all regions, except in the resistive

layer, can be represented by Floquet space harmonics. Explicitly, they are given by

Transmitted region
W= 55 TpqQpq (%, ¥) expl-itpq ) (1.1.32)

Dielectric layers
Y= );qz Qpq (%, ¥) [A(f‘P,]) exp(—j I;‘q) z) + B%) exp(+j'¢;q) 2)] (1.1.3b)

Incident region
W=3% Qpq (5.3 [Ipg exp(—Y2D) z) + Ryq exp(+iY pq 2)] (1.1.3¢)

Here the summation indices (p, q) take the values
p.gq=0,£1,%2, ...

The factor Q,,, describes the transverse variation of the (p, q)th space harmonics:
Pq p, q)th sp

Qpq (X, ¥) = exp[—j(upoX + XpgY)] (1.1.5)
where

upo = (2p1t/a) + ko V Hae€E26 sin 90 cos ¢0 (1.1 6)

Vpq = (-2p7/atan Q) + (2qm/b) + kg V Iy6E26 Sin B cos By (1.1.7)

The propagation constants in (2.3) are defined by

‘Y(p?q) = [k(z) W, en—(up20+vp2q)]”2,n= 1,2,...,10 (1.1.8a)
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where the square roots are taken such that

Re g 20, Im g‘q)so (1.1.8b)

For given incident field (I qu), the unknown modal coefficients {T Ag'q), qu} are to

IS P

be determined. In addition to the TE modes described in (1.1.3), TM modes exist in the
various other regions. They are derivable from V in accordance with (1.1.2). We represent y
in the same manner as in (1.1.3) except that the constants {qu, Agg, qu} are
replaced by {qu, Ag'q), ...+ Rpgl.
1.2. Fields at the Interface
We use the same field representations given in Section 2, 79-Rept. The tangential fields just

below the R-sheet are (Appendix C)
Ey(z=0-) = 55§ Wpq Qpq (%) { g [0 + Poq) Ty + (P + Pp) Rpa]
+ (f8)ke6) Bog LB - P2 Ty + B2 - o) Rpg] } (1.2.1)
Hy(z=0-)= 35 j wpq Qpg (x.¥) { S koZobs) Bpg [0 - P50 Toq

+ (P = pSa) Rpgl + (-1/Zg) G [(B +750) Trg

~2) . =@N :
+ (P& +PS) Rygl } (12.2)
where
_ A
Bipq = Wpo R Vpq —§ up0) =2 x Bpg (1.2.32)

Boq = Wpq R upo + 9 vpg) =2 x Gpq (1.2.3b)
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Woq = Nuh+ vy (1.2.3¢)
Bpq = tan~! (Vpg/upo) (1.2.3d)
p=0,+1,%+2,...,+P (1.2.4a)
q=0,£1,£2,...,%+Q (1.2.4b)

From (1.2.4) we note that the total number of Floquet space harmonics used in our computation is
NF=2@2P+1)(2Q+1) (1.2.4c)
The tangential fields just above the R-sheet are
Ey(z=0+)=22] Wpq Qpq (%, ) {Bq (P9 + P5) Tpq
+ (D 7koe1) Bpg Bt - P8 Thq ) (12.5)
Hi(z = 04) = L3 j wpq Qpq (6, 1) { Opa/oZott) Boq (P~ Po) Tpq
+ (1/Zg) Gipg (P + Pye) Tq } (12.6)

Next, let us consider the representation of the unknown surface current on the resistive X;.

Note that, regardless of the value of R, the current J satisfies the same boundary condition that

Normal component of J; =0 (1.2.7)
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at the rim of the circular plate. In the special case in which R, = 0 (perfectly conducting plate),

J, is given by the well-known expression

Js(z=0)=Z_OZXEind (z=0) (1.2.8)

where
E;4 (z =0) = Tangential electric field in the circular aperture of a

complementary (inducting) screen when R, =0
A" \’ A" H H
= rzn§ { (Crmn + D) Uppn + (Clr.r{m +Dpp) Umnn

¥ (}%ﬂ]@gn DY) Vi + [Ekomf](éﬁ‘m - Din) Vimn } (129)

C C
The representation in (1.2.8) is based on the Babinet principle that

ZOEmd (z = O) 4 Hcap (Z = O+) or Hcap (Z = 0—)
and the fact that

Js (Z = 0) = 2 X [Hcap (O+) - Hcap (0_)]

Because of (1.2.7), the same representation (1.2.8) for the conducting case can still be used for
the present resistive case.

The summation in (1.2.9) represents the superposition of fields on four rings. Let us
concentrate on the field on a typical ring. As explained in Appendix A, the assumption of

narrow ring width allows us to use a simplified modal field representation, namely,

cVH_3 L [Am 60]1’2 sin m¢
m =P Un@)] | _cos mo
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In another code “ring2c,” we used the exact coaxial waveguide modes to represent the field on
the rings. For narrow rings, there is virtually no difference in their solutions.

Our problem at hand is to determine NF transmission coefficients {qu, qu} and NG
reflection coefficients {R,g, Rpq }, for a given set of incidence coefficients {I,q, Ipq}. In the
present formulation, we determine aperture-field coefficients {Cp,;, + Dy (—Zmn - I—)mn} as an

intermediate step.

1.3. Field Matching atz =0

There are three boundary conditions to be satisfied. The first one is

E,,(z=0)=E@z=0+), inX;+3, (1.3.1)

where

2. = resistive circular plate

2, = remaining portion in a unit cell.

We multiple both sides of (1.3.1) by the operator

a2 b2
de de exp j(UpoX + Vpgy) (1.3.2)
-al2 -b/2
We obtain
2 4 1 3
T _Pba* g +p§’q)+p(‘"?1 (13.3)
- (5 6) P4 5 6) P4 i
" PbhatPha | PhatPpq
Q) = (1) =03 6
= _[PM Pz  Pr-Prar |[Eitha .
PI=|=5) _=6) Pat=(5) =6 M| D) (1.3.4)
Ppq —Ppg Ppq —Ppq €6Ypq

which relate the transmission coefficients to the reflection coefficients.

The second boundary condition is
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JS(O) ’ in 2'l
Js(outside) = { (1.3.5)
0 , in 22

Here J(0) is the induced current on the resistive circular plate and is given in (1.2.7). The

current J(outside) is that calculated from the discontinuity of the tangential H-field outside the

resistive plate, namely,
J (outside) =2 x [H(0+) - H(0-)], inX;+3%, (1.3.6)

We will now consider the enforcement of (1.3.5) in detail. Substituting (1.2.2) and (1.2.6) into

(1.3.6) gives

. 2 : A
J(outside) = [Z))%g_]wpq Qpq % ¥) {8g FS) [(p0 + P5a) Ipg + (P + o) Rpg]

A 4) A T [=0) =OhT 2) =4hp Y w47
+ Opq Fpq Ipg + Bpq Fpq [(ppq ~Ppq) Ipg+ (Ppq —Ppq) qu] +Ppq Fipq Ipq}

(1.3.7)
where
D \A(5) _ L(6) 'Y(6) 2 _ @
F(3) _(i)( Pq )qu'pPQ_'_l( m)ppq_ppq (1.3.8)
pa T\ 2 (5) © "2 2, @ e
kOI*‘ll ppq+ppq k()IJ'6 ppq+ppq

1
=5 X% -x5a]
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@ _ 7(6) n_ .3 M, 3 qu) P(;q)
Fpq = 2koig | (Ppa ~Ppa) = (Ppa * Ppq) Repwcl I (1.3.9)
Pq
b1
2w qu
=(2)  =(4) —(5) , =(6)
=3) _1Ppq *Ppq 1 € pq Ppq +Ppq (13.10
PAT2-2) -4 2 —(5) =(6) 3.
Ppq —Ppq pq Ppq —Ppq

6)
1 Y(pq 2 =5

ko€
@ _1] -, =03 1M =3 p‘,fq’ qu)
=@ _1 ) _p®
Fpq =3[ (Ppq +Ppa) ~ (Ppq )_(2) _(4)] (1.3.11)
Ppq ~Ppq
11
2w Xpq

In deriving (1.3.7), we have made use of (1.3.3) and (1.3.4). We multiply both sides of (1.3.5) by

a2 b/2 &pq .
j dx I dy [exp _](U X + quy)] [wpq] . (1.3.12)
—an b2 Bpqg

We obtain
1 3) ) (@ 3 4
jab qu { [(P(pq) + p%q) + (p(pq? + pﬁ)c; pq] F(pq) + Ipqr“(pq)

K)\'% A% \"/ 3HH H H
=23 [-X 3 (Coun + Do) = Xpgmn (Cmn + Do)

4HV =V 4H H
X (Chn— D) — X§ Lm(cmn Dh ] (13.13)
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. 2 (1) =GBhT 2) =@4hop 3,7 @
jabwpg { [(‘_’pq ~Ppq) Ipg+ (Ppg —Ppq) qu] Fpq + IpgFpq

nv \"% \% 1)H H H
= 2% [Xggn (Cmn + D) + Xgamn (Conn + Do) ] (1.3.14)
where
v
Xéq,)nn cos m Qpg
= (1)
H = —J Wpq Opgmn
Xéq,)nn sin m Qpg
< (3)V 7 .
Xéqzm, sin m ¢pq
=i 3
- = —J Wpq Opgmn
—X[Eann— —cos m ¢pq
[« (4)V 7] .
X;ngnn T sin m ¢pq
= 1mn |54
=-J Wpq Cpgmn
_xg;?,{*n_ ¢ cos m §pq
1
Ggq)mn
given in Appendix B
o)
pqmn
4
ogq)mn =0

In deriving (1.3.13) and (1.3.14), we have made use of the fact that

2 x A s@tyy =-A * Boq (1.3.152)

A

ZxAByg=Aca (1.3.15b)

Pq

From (1.3.13) and (1.3.14) we can solve for {Ryq, l_lpq} in terms of {CX,,,, Dmn, ...}. The results are



Rpq=

pq =

169

m, 3 4)
_Pp2q+PT pa~ (3 Fz(pq I (1.3.16)
), 'pq 3.
Pl +Pha | Fog (Ph +Pho)
3
(-1/F)

+ =3y { x GV (CV +DY )+X(4)V ((_:V _BY)
jab wgq (p(p? + p(;g) mn pgmn \“~mn mn pqmn (“mn mn

3)H H H = =
fxOH (B oDl xOH @B DR )

pamn pqmn
s(1) _ <) =(4)
—gfzq) f&q) —pq‘_(3) _I(;F))q —(4) qu (1317)
qu_qu qu (ppq'"ppq)
F(3)
(—IIqu)

+ =33 X(l)v (Cv +Dv )+X(1)V (CH +DH ) }
. 2 —2) =) pqmn \“mn mn pqmn \“mn mn
jab Wpq (ppq "ppq) mn

So far we have expressed the transmission and reflection coefficients in terms of unknown

current coefficients

v A\ H H AV RV ~H wH
{Cmn’ Dmn» Cmn» Dmn Crmns Dmn» Cmns Dmn} (1.3.18)

Those expressions are independent of the resistivity R.

The third and the last boundary condition to be enforced is

E(z=0-)=R.J(0), inX, (1.3.19)

where E, is given in (1.2.1), and J; in (1.2.8). Multiply both sides of (1.3.19) by

d 2n ’QXU\;{{n

Ipdp Id¢ v (1.3.20)
© © «2xVpm
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we obtain
3)V nv
~Xaiw YOV Xpamw |
§q2 Rpq + Kot Ry, (1.3.21)
HH 1H
-Xéq)lw 6 Xéq)lw
\'% \Y%
Ciw + Dy
= (D nZg
H H
Clw + Dlw
4)V -V =V
“Xf)q)lw fl Ciw — D
%qZ Rpq ¢ = EEDHInZg + —k;‘i (1.3.22)
(4HH =H =H
_qulw ) Ciw — D
where
’ 1 3 2 4
Ry = (0% + p8) Lo + (02 + f) R,

5 _ =) =06BhT 2) =@Ghgp
Rpq=(Ppq —Ppq) Ipg + (Ppq —Ppg) Rpq

Substituting (1.3.16) and (1.3.17) into (1.3.21) and (1.3.22), we obtain the desired matrix

equation.
X'C=G (1.3.23)
Here
tl(;?;’n (DH =)V (DH
) BV (OH BV 3H
X' =

t(5)V t(S)H -t—(S)V —t-(S)H

L (V. (DH OV f(DH



VvV A" _ _
Emn * D gl
H H
Cmn + Dmn _ g(,%,)
C = & -
Crn = Prnn e
C D 4
-Crn D -

The explicit expressions of X’ and G’ are given below.

t(l)V,H

i sinm
Iwmn _1 TY 1N\ 1 X(3)V,H 0(3) ¢pq
(3)V.H ~ab'Rg qu)FG) pgmn “pgmn
Ciwmn Pq —cos m ¢pq
. i cosm ¢
+( N}( J ) 1 X(;()]X;?o&)mn P
ko€s |\ Wpa/FC)
P Fpq sin m ¢pq
+87 85 (-DF1nZg
—(1)V,H 1 X(3) IR X(4)
Uiwmn t
= Same as except
TOVH ® N
wmn no diagonal term
GovH =) X® _y x®
Clwmn t
= Same as except
TYV.H 7 '
t(hlmn 0 no diagonal term
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(1.3.24a)

(1.3.24b)

(1.3.24c)



172

T(IS)V’H
wmn i
Lyl (L x@VH @ *in m Bpg
~ab 54 ( )F(s) pamn “pgiw
omn €05 m g
+ 87 8y, (-1 NZg (Tyw/koe,) ©(13.24d)
(1 e
2w sin m Qpq
N> Wpq Oontw (Fon) /FOO) I
g(,vz | —cos m ¢pg
-cos m ¢pq
1 =(4) , =3 6 T
+ Wpq Soaw (-Fa / Fo) (e / koes) Tpg
| sinm ¢pg
3) .
gsw sinm Qpq
=33 Wpq O (Fon 1 FO) T
4) Pq
gSW cos m Qpq

In summary, the final matrix equation is in (1.3.23) for the unknown coefficients {C’}. Once
{C’} are solved, the reflection coefficients are calculated from (1.3.16) and (1.3.17), and the

transmission coefficients from (1.3.3) and (1.3.4).
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Appendix A: Modes on a Narrow Ring

To determine the modal field on a metal ring, we may consider its complementary problem,
the modal field on a coaxial waveguide, because these two fields are related by the Babinet
principle. Consider a coaxial waveguide shown in Figure A.1. Its normal modes can be found in
a standard textbook (e.g., N. Marcuvitz, Waveguide Handbook, New York: McGraw-Hill, 1949,
pp- 72-80). They are given in terms of Bessel functions and are rather complicated. Under the

condition of narrow gap that

dc;c«l (A.1)

we can use a set of simple and approximated modes to be deduced below.

Consider the field in the neighborhood of Q in the coaxial waveguide. Under the condition
(A.1), it can be well approximated by that in a slot waveguide on the right-hand side of Figure
A.1. The fields in the latter are expressible in terms of two vector potentials, namely,

cos 2me,,
2nd 5\ 4
TE modes: v=Am cos 11 (y' + ijetjrmf‘z (A.2a)
sin imrn x’ 0
2nd

2 ,
_|cosTmax 5
TM modes: V=An, sin % (y’ + §)eijrm"z (A.2b)
sin imn x’ 0
2nd

o=\ - (23

where
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The boundary condition for the slot waveguide is that

(Field at AB) = (Field at A'B’) (A.3)

Figure A.1. The field in a coaxial waveguide with a narrow gap can be approximated

by that in a slot waveguide.
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which leads to the admission of both cosine and sine functions in (A.2). Making use of the

replacement
x'—=dd (A.4a)
y—>p-05d+c) (A.4b)

we obtain the approximated modes in a narrow coaxial waveguide, namely,

y=An, cosm9 {cos o p- c)} e mn? (A.5a)
sinm ¢ d

F=Apn| ¢ {sin o - c)} e=Tmn? (A.5b)
sin m ¢ 5

Because of the fact that d — 0, we make a further approximation by using only

n=0 (A.6)

modes in (A.5), we obtain

cosm . .
TE modes: Y= L ¢ [Cp e m* + Dmcﬂrmz] (A.7a)
m=0 Lsinm¢
TM modes: y=0 (A.7b)
where
2 m 2
I, ="\[ki- (E) (A.7c)

The non-zero field components can be calculated with the formulas



176

p=— Loy (A.8a)
p 99
1 1 0%y
Hy =+ - A.8b
*“jkoZo p 06 0Z ( )
Returning to Figure A.1 let us write down a field representation at z = 0 for the coaxial
waveguide:
E0)=2.{ (Cl,+ DY) UY, + (c2 + D) Un } (A.92)
1 r
H(0) =7 Y [—kg) (Y -DY) @ x U} +(Ch-DR) ExUp } (A9D)
where
VH_p1[ AnZg 12| sinme | m=1,23, .
Un ‘pp[ ] m=0,1,2, ... (A.10)

27 In (2)

r ’

—cosm ¢

where Zg=120mand A, = 1ifm=0and Ay, =2ifm# 0. The m = 0 mode is the well-known

TEM mode in a coaxial waveguide. Note that UY,;H has been normalized such that

Zy, ifm=n

VH, (VH _
jslotum U pdpdo {0’ N (A1)

is satisfied.



Appendix B: Coupling Coefficients
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To change (1.3.5) into a matrix equation, we apply the operation (1.3.12) to both sides of the

equation. The resultant equation is given in (1.3.13) and (1.3.14). In this appendix, we give the

details of deriving the coefficients {qumn}.

Applying (1.3.12) to the right-hand side of (1.3.5), the integral is reduced to 4 integrals over

the 4 metal rings, namely,

J.over cell axb z Iover aring

4 rings

In the following, let us concentrate on a typical ring with outer and inner radii (d,c):

&

[X(I)V,H:l

pgqm J(UpoX + VoY) Pq V.H
= pdpdo epo* T Ve w [ } Un,
3)VH .[ I Pd] A

Xéq)m siot B

Pq

where U,\,I,’H are given (A.10), and

-1 4 A AR
Bipq = Wpq (X Vpg = ¥ Upo) =2 X Bpq

A -1 A
qu=wpq(Qup0+yqu)='z\><<’iPq

The final results after evaluating (B.1) are

v
qum . (1) cosm ¢pq
=) Wpq Opqm

DH i
Xéq)m sinm ¢

(B.1)

(B.2a)

(B.2b)

(B.3)
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XSq)X sinm ¢
| ¥ oo [ P ] (B.4)
qum —os m ¢pq
where
Y
Pq
o)
Pq Upo
w.,d
1 Am ZO 12 . -1 - Jm(t)
Opgm = —-si_] (-2m 7) j™ wpq ' dt (B.5)
21t In (c) woc
Pq
® _[BnZo T? o im
Opaqm = i (27) j™ Wpq [ (Wpad) = Im (wpqc)] (B.6)
2r In (9)

The derivation of (B.5) is given below. From (B.1) we have

OM | .
MR j dp _" do ¢ YpaP oS0 - %q)[ sinm ] (=1) Wpg sin(® - 4pg) (B.7)
Xg]),ﬁ —cosm ¢
where
A ZO 172
C=(21t-(lrr1nd—lnc))

Using the identity in (B.7)

sinm ¢ =cos m ¢pq * sin m(¢$ - ¢pq) +sinm ¢pq e cos m($ — ¢pq)
cos m ¢ = cos m pg * cos M(P — Ppg) — sin m Gpq * sin (¢ — dpq)

we obtain

X“’%’ d cosméd :
on|C J dp | Ao’ (=wpg) P9+ [cos(m-1) ¢’ - cos(m+1) '] & *paP ¥ (B.8)
x(DH sinm ¢

pqm C Pq



where

0" =0 - 0pq

The integral with respect to ¢’ can be written in terms of Bessel functions, namely,

ng)r}nl cosmé !
[ 1 H}: -Cwp, [ _ pqJn(j)m~1 . Idp Ume1 (Wpq P) + Imi1 (Wpq P)]
Xéq )m sin m §pq &
wpqd
——c@mm@ D[ MO%), [ IOy
sin m Qpg Wil !

which is identical to (B.3) and (B.5).
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Appendix C: Field Expression in (1.2.1)

The field just below the R-sheet is the field at z = 0- in region 6 (Figure 1.1). The modal

coefficient in region 6 is { Ag, B(:q) }. By matching the fields at the dielectric interfaces between

layers 6 to 26, we obtain

6) _ (1) (2)
Abq = Ppq Ipg + Ppq Rpq

6) _ (3) 4)
Bpq = Ppq Ipq + Ppg Rpq

26 _=)7 _<s@p
Apg = I,+pPpe R

pq ‘pat Ppq Fpq
R6) _ =37 ~4) 5
Bpg =Ppq Ipg+ Ppq Rpg (€.

(1) <)

To define the coefficients { Ppq: Ppqr -+ } , let us introduce the 2 x 2 matrices, forn=1, 2, ..., 26,

..(n) (n)

e_Jqu z e"’jqu z
Foo (2) = (C.22)
(WeTthaz M o#iTpq2
pa® ~¥pq ©
e—jvf,'gz e+n§2,)z
)
Fog ()= (C.2b)
Pq - {n) . (n)
1 (n) —i¥pqz 1 (n) +iYpqz
— e °'Pq - e ’'Pq
£, Y(pq e, Y(pq
Then the coefficients in (C.2) are given by
1 @
Ppq Ppg 25
- 1
=TT (R a1 g™ ) (C.3)
3 L9 n=6
ppq ppq

The same equation holds for {ppq, Ppq -

P 5D } except that Fgg is replaced by ?gg.



181

The field in upper region 1 can be expressed in terms of that in upper region 5, namely,

ASq = P Tpq exp[+i¥pq Tc] (C.4a)
B(qu) = P(;Q Tpq e"p[‘j%plq) T (C.4b)
‘Z‘(@]PC; = ng) qu exp[+jy(plq) Tc] (C.4c)
Bl = P Tpq eXPlithq Te] (C.4d)

where

1. = metal thickness = zero in the present capacitive FSS

p(;q) = pg’q) expl-j plq) 7] (C.5a)
P = Pba cxP[+iYpq Tel (C.5b)
a (8)
Ppq  Ppg
= TTIER a1 F&Y @) (C.50)
9 (109) n
Ppg Ppg

The same equation (C.5) holds for {f)(:q) , B(gq) s } except that Fg‘q) is replaced by l_:gg. Note
that { p(;;q) , p(ll,g), ﬁg;q) ;_)(Fl,g)} do not enter into the field calculation. The reason that the

exponential factors are introduced into (C.5), is to facilitate the field matching at z = 1 later.

The matrices in (C.3) and (C.5¢) can be written in a more explicit form, namely,

. (n) ., (n)
: (1+ agg) epa  (1- a(;q)) e*i%pq
[FS (]~ Foo™ ) =5 (C.62)
) b M)+
(l—apq)eJPCl (l+apq)cJPq
where
1
al) = A Dpfe) (C.6b)

o= by 421, c0
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1
cha = [ ~Yal & (C6d)
n=1,2,3,4,and 6,7, 8,9. (C.6¢e)
To calculate [I_:(;q) (ln)]'1 ﬁgg’l) (I,), only the factor a(l;’q) in (C.6a) is replaced by

2 = 2t (Ex/Ens1) (C.7)






